
Computer Mathematics for Graduate Engineers

Week 1
Computer structure and organisation

Department of Mechanical and Electrical System Engineering

about this course

instructor: (Prof. | Dr.) PIUMARTA
e-mail: ian.piumarta@kuas.ac.jp
web: kuas.org/~piumarta

location: S401 (office), 4F Electronics Workshop (lab)
office hours: send e-mail for appointment

course title: Computer Mathematics for Graduate Engineers
course web site: kuas.org/~piumarta/cm

2

what is a computer?

computer |k@m’pju:t@|
noun

an electronic device capable of receiving
information (data) in a particular form and
performing a sequence of operations in
accordance with a predetermined but variable
set of instructions to produce a result in the
form of information or signals.

add, subtract, multiply, divide integrate, differentiate log, exp

� analogue voltages

� representing continuous values

3

what is a computer?

more recently:

� a digital system that stores, transforms, and communicates data in digital form

M
an

ch
es

te
rU

ni
ve

rs
ity

S
m

al
l-S

ca
le

E
xp

er
im

en
ta

lM
ac

hi
ne

,1
94

8

data is represented by a fixed number of discrete (non-continuous) symbols

� called digits
4

data and instructions

data is any information that a computer can process

individual data values may represent

� numbers

� alphabetic characters

� any other encoded information (music, picture, video, etc.)

instructions are commands telling the computer how to manipulate data

� instructions are represented as numbers

� they are stored in the computer just like any other kind of data

� a sequence of instructions is a program

� programs can create, save, load, execute other programs
– compilers and operating systems are programs that manipulate programs

(which is easy, because programs are just data)

5

data representation

all data is stored and processed in the binary form
� that is, as a series of 0s and 1s
� e.g., 01010011000110111101

bini (Latin, ‘two together’)
→ binarius
→ binary (English, ‘a pair’)

each binary digit is called a bit

� binary information digit

� the smallest unit of information that can be transmitted, stored or processed

6

why binary?

advantages

� basic decision-making processes in logic are binary: “yes/no”, “true/false”, “1/0”

� hardware that manipulates binary information is easy to design

� binary signals are reliable, and easy to store as voltage levels in hardware

Voltage

Time
0 1 0 1 0 1

1

0

logic
threshold

ideal noise / interference
(communications)

leakage
(memory)

disadvantages

� we are more familiar with decimal numbers

� binary numbers are very long when written down

7

binary data units

bits are grouped into larger units to hold more meaningful data
nybble

bit number → 3 2 1 0

0 0 1 1

byte

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

16-bit word

15 14 13 12 11 10 9 8

0 0 1 1 0 0 1 1

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

32-bit word

31 30 29 28 27 26 25 24

0 1 0 0 0 1 1 0

23 22 21 20 19 18 17 16

0 1 0 1 0 1 1 0

15 14 13 12 11 10 9 8

0 1 0 1 1 0 1 0

7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

64-bit word

63 62 61 60 59 58 57 56

0 1 0 0 0 1 1 0

. . .

. . .
7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1

a word is usually the natural size of a datum (e.g., an integer in arithmetic)

the leftmost bit is the most significant bit (msb)

the rightmost bit is the least significant bit (lsb)

1

32-bit wordmost significant bit (msb) least significant bit (lsb)

msb lsb

31 24 23 16 15 8 7 0

7 07 07 07 0

1 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

bytemsb lsb bytemsb lsb msb lsb
most significant

byte
least significant

byte

8

computer organisation

Central
Processing

Unit

Random
Access
Memory

Address Bus

Data Bus

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse Keyboard, HDD GPU, Audio, SSD

the Random Access Memory (RAM) is where data and program instructions are
stored

� individual data bytes or words can be read and written

� access time is constant (data can be read/written in any order)

the Central Processing Unit (CPU) manipulates data according to program
instructions

an I/O controller performs input/output operations (human interaction, data storage)

the data bus carries data between these units

the address bus identifies which data item in memory to read or write

� or which input/output device should provide/receive data
9

main memory operation

each location in main memory has a unique address

� main memory locations are selected for reading or writing using their address

� memory addresses are just binary numbers
Random
Access
MemoryAddress Bus

Data Bus

0

4

8

16

20

24

28

24

11001010

read: data_bus← memory[address_bus]
write: data_bus→ memory[address_bus]

the address bus supplies addresses to the main memory

the data bus carries data between main memory and the CPU

� write: copy the value on the data bus to memory at the address on the address
bus

� read: copy the value in memory at the address on the address bus to the data
bus

10

main memory organisation

word-addressable memory

� a memory address identifies an entire word

� consecutive words have consecutive addresses

32-bit
word-addressable

memory

...000000

...000001

...000010

...000011

w
o
r
d

a
d
d
r
e
s
s

4 bytes per word

32-bit
byte-addressable

memory

...0000xx

...0001xx

...0010xx

...0011xx

b
y
t
e

a
d
d
r
e
s
s

4 bytes per word

00 01 10 11

byte-addressable memory, N bytes per word

� a memory address identifies a single byte

� consecutive words have addresses that increase by N

11

central processing unit

the Central Processing Unit (CPU), or ‘processor’, executes program instructions

most CPUs contain at least the following parts:

� instruction register (IR): holds the instruction currently being executed

� control unit (CU): controls the CPU’s execution of instructions
– decodes the content of the instruction register

� arithmetic and logic unit (ALU): performs arithmetic/logical operations on data
– addition, subtraction, multiplication, logic operations

� general purpose registers (GPRs): very fast word-sized memory locations
– provide input data to the ALU, store output results from it

� processor status register (PSR): stores information about ALU results
– zero, negative, overflow, carry, etc.

� program counter (PC): contains the address of the next instruction to execute

12

instruction execution

machine (‘fetch-execute’) cycle:
repeat

1. fetch instruction
� copy PC to address bus
� read from memory into IR

2. decode instruction
� CU inspects the IR

3. fetch operand(s)
� move data from memory into DR, if re-

quired
� present DR and/or registers to ALU

4. execute instruction
� ALU performs operation on data

5. store result
� write ALU output into register or memory

6. update PC
� with the address of the next insutruction

forever

Central Processing Unit

Address
Bus

Data
Bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

DR: data register, holds data read from memory while ALU performs an operation
AR: address register, holds address for memory read/write operation

13

a typical machine instruction

add register 1 to register 2, putting the result in register 3

add r3, r2, r1
CU

+

registers

PSR

operation

r0
r1
r2
r3
r4
r5

11
31

123
11
31

42

operation destination operand1 operand2

IR

R2

R1
source and
destination

R3

00101010 00000011 00000010 00000001
 opcode dest reg src1 reg src2 regdecode

C=0, .N=0, O=0, Z=0

14

a typical machine program

search an array to find the index of a particular value, assuming that

� the variable array holds the address of the start of the array

� the variable length holds the length of the array

� the variable value holds the target value that we are searching for

� the index of the element should be returned in register r0

� if the target is not found, -1 should be returned in r0
label operation operands comment

load r1, array load array address into register 1
load r2, length load array length into register 2
load r3, value load target value into register 3
set r0, 0 the next index to check is held in r0

next: compare r0, r2 check if we reached the end of the array
jump_if_equal fail if so, target was not found
load r4, r1[r0] fetch next element from array
compare r4, r3 compare it to the target value
jump_if_equal done if found, return the corresponding index in r0
add r0, r0, 1 increment the index
jump next continue searching at the next index

fail: set r0, -1 index -1 means ‘target not found’
done: halt r0 contains index of target element, or -1

15

input/output

bus-based connections to peripheral devices

� parallel bus: complex connection, high speed, internal
– transfers an entire byte or word at the same time

* PCI (Peripheral Component Interconnect): graphics cards, network cards
* SCSI (Small Computer System Interface): server disk drives

� serial bus: simple connection, lower speeds, internal/external
– transfers one bit at a time
– a byte (or word) has to be serialized for transmission

* USB (Universal Serial Bus): keyboard, mouse, external memory
* SATA (Serial AT Attachment): consumer disk drives

device direction peer typical bus
keyboard, mouse I human USB
printer O human USB
graphics card O human PCI
sound card I/O human USB/PCI
HDD, SSD I/O computer USB/PCI/SATA/SCSI
optical drive I/O computer USB/SATA
network card I/O computer PCI

16

course outline
Central Processing Unit

Address
Bus

Data
Bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR Central
Processing

Unit

Random
Access
Memory

Address Bus

Data Bus

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse Keyboard, HDD GPU, Audio, SSD

� what components does a computer need to store and process data?

� how are numbers represented inside the computer?
how are numbers represented outside the computer (on paper)?
how does arithmetic work in binary?

� how is data protected against damage (e.g., noise, degradation)?
how are large amounts of data stored/transmitted efficiently?

� how is the ALU designed?
how can its mathematical operations be implemented as simple logic operations?
how are registers and memory built from simple logic functions?
how does the control unit provide sequencing using only logic?

� how is the control unit designed and described, mathematically?
how how does that relate to other sequential things, like language?

� how are compuer languages analysed and translated so that we can program the CPU?

17

course outline
Central Processing Unit

Address
Bus

Data
Bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR Central
Processing

Unit

Random
Access
Memory

Address Bus

Data Bus

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse Keyboard, HDD GPU, Audio, SSD

1 Overview of computing systems
Digital and binary systems. Data, instructions, memory, busses, input/output. CPU, ALU, control.

2 – 4 Mathematics of data
Number systems. Representations: binary, octal, hexadecimal. Radix conversion. Negative
numbers. Binary arithmetic.

5 – 6 Mathematics of information
Basic information theory. Error detection and correction. Data compression.

7 – 9 Mathematics of computer hardware
Boolean logic and algebra. Digital circuits, ALU design. Combinational and synchronous logic. Data
storage, memory cells.

10 – 12 Mathematics of control
Models of computation. Sequential logic, control unit design. Finite State Machines. Determinism
and non-determinism.

13 – 15 Mathematics of language
FSMs as regular expressions and regular grammars. Grammar types. Linear vs. recursive
languages. Parsing, ambiguity. Translation and interpretation of progamming languages.

18

glossary

address — a number that uniquely identifies a byte or word of data in memory (or a peripheral device
controller) during a read or write operation.

address bus — a parallel bus that carries address information to memory (or a peripheral device
controller).

address register — a CPU register that holds the address being accessed during a read or write
operation.

arithmetic and logic unit (ALU) — the part of the CPU that performs arithmetic and logical operations on
one or two operands.

binary — any system that distinguishes between two values, states, etc.

bit — a single binary information digit, the smallest possible unit of data, usually written as ‘0’ or ‘1’.

bus — a serial or parallel connection over which information (data or addresses) is communicated.

byte — a group of eight bits.

central processing unit (CPU) — the part of a computer that executes programs and manipulates data.

continuous — a value that can change smoothly over a certain range (temperature, wind speed, etc.),
rather than being discrete.

19

glossary
data — values that represent information or instructions within a computer.

data bus — a bus that carries data from one part of a computer (or peripheral device) to another.

data register — a CPU register that holds data after it is read from memory, or while it is being written to
memory.

register — a fast memory location implemented within the CPU holding data that must be accessed
frequently or quickly.

digital — any system that uses discrete symbols to represent data.

digit — a symbol representing information such as a logical or numerical value.

discrete — a quantity that takes on specific predefined values (integers, days of the week, etc.), rather
than varying continuously.

input — a device or action that moves data into the computer.

input/output controller — hardware that controls a peripheral device.

instruction — a binary word that can be interpreted by the control unit as a command for manipulating
data within the CPU.

instruction register (IR) — a register that holds the instruction currently being executed.
20

glossary
least significant bit — the rightmost bit in a binary value, having the lowest bit number and the least
numerical significance.

least significant byte — the rightmost byte in a binary value, having the lowest numerical significance.

machine (fetch-execute) cycle — the (infinitely-repeating) set of steps performed by the control unit to
ensure that an instruction is executed.

most significant bit — the leftmost bit in a binary value, having the highest bit number and the most
numerical significance.

most significant byte — the leftmost byte in a binary value, having the most numerical significance.

nybble — a group of four bits.

octet — another word for ‘byte’.

operand — an input value to an arithmetic or logical operation.

output — a device or action that moves data out from the computer.

parallel — a multi-wire connection that can move an entire byte or word in a single transfer.

parallel bus — a bus that uses multiple wires to connect all relevant bits between two devices, allowing
entire bytes or words to be moved in a single transfer.

21

glossary
peripheral device — an electronic machine connected to a computer, typically performing an input/output
or storage function.

processor status register — a register that stores information about the results of ALU operations
(negative, zero, overflow, carry, etc.).

program — a sequence of instructions that are executed by the CPU to manipulate data.

program counter — a register that holds the address of the next instruction to be executed.

random access memory (RAM) — a large, relatively fast memory holding most of the data being
processed, that can be accessed in any order without penalty.

read — an operation that moves data from memory (or a peripheral device) to the CPU.

serial — a single-wire connection that moves one bit at a time, requiring N transfers to move a N -bit byte
or word.

serial bus — a bus that uses a single wire to transfer one bit of information at a time between two devices.

serialization — converting a parallel quantity (such as a register or memory location) into a sequence of
single bits that can be transmitted serially.

word — a unit of data representing a natural unit of processing (e.g., the size of an integer manipulated by
the ALU, or the size of the address bus, etc.) for a CPU.

write — an operation that moves data from the CPU to memory (or a peripheral device).
22

