Computer Mathematics

Week 2 Positional number systems

last week

what is an electronic, digital computer?

• stores, manipulates, communicates binary data

binary data

• bits, bytes, words

stores data: Random(ly) Access(ible) Memory

- each byte (or word) has a unique numeric address
 - from 0 to sizeOfMemory 1
- supplied via the address bus
- data can be written/read via the data bus

last week

manipulates data: Central Processing Unit

- Program Counter
- Address Register
- Data Register
- Instruction Register
- Control Unit
- General Purpose Registers
- Arithmetic and Logic Unit
- Processor Status Register

Communicates data: Input/Output Controller

- PCI Peripheral Component Interconnect
- USB Universal Serial Bus

positional number representations

each *digit position* in a number has a different *significance* or *weight* each weight is related to the next one by a constant multiplier

- the multiplier is called the *base* or *radix* r of the number
- position 0, immediately before the *radix point*, has weight 1 (r^0)
- as you move left, each weight is multiplied by the radix
- as you move right, each weight is divided by the radix

$$r^2$$
 r^1 r^0 r^{-1} r^{-2}
 \uparrow
radix point
(or *'separator'*)

the value of the digit d_i in position i is

• the digit multiplied by the weight of its position, $d_i imes r^i$

the value of a number is the sum of the values of all the digits

$$\sum d_i \times r^i$$

decimal system

decimal numbers have base (radix) r = 10

• in Latin, "decima" means "one tenth part"

there are 10 symbols for the *digits*

• 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

position weights are powers of $10\,$

the decimal radix is implied (or denoted by the subscript 10 when ambiguous)

e.g., converting the decimal number 36.25_{10} to decimal:

binary system

binary numbers have radix r = 2

• in Latin, "bini" means "two together"

there are 2 symbols for the digits

• 0 and 1

position weights are powers of 2

the binary radix is denoted by the subscript $2\,$

e.g., converting the binary number $100010.01_{\rm 2}$ to decimal:

octal numbers have radix r = 8

• in Latin, "octo" means eight

8 symbols are used for the digits

• 0, 1, 2, 3, 4, 5, 6 and 7

position weights are powers of 8

the octal radix is denoted by the subscript $\boldsymbol{8}$

e.g., converting the octal number 44.2_8 to decimal:

hexadecimal system

hexadecimal numbers have radix $r = 16$ • in Greek, "hexa" means six (plus Latin "decima" meaning tenth)								
16 symbols are used for the digits								
• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F								
position weights are powers of 16								
	16^3 16 4096 25	5^2 10 56 1	6 1	\uparrow	$\frac{16^{-1}}{\frac{1}{16}}$ nal point	$\frac{1}{256}$	16^{-3} $\frac{1}{4096}$	
the hexadecimal radix is denoted by the subscript 16								
e.g., converting the hexadecimal number 24.4_{16} to decimal:								
			$egin{array}{c} {\bf 4} \ 16^0 \ 4 imes 1 \end{array}$		4 16^{-1} $4 \times \frac{1}{16}$	= 36	.25	

radix conversion: binary, octal and hexadecimal

one octal digit represents exactly three binary digits $(8^1 = 2^3)$ one hexadecimal digit represents four binary digits $(16^1 = 2^4)$ converting between binary and either octal or hexadecimal is easy

- octal: convert bits in groups of three
- hexadecimal: convert bits in groups of four

octal		7			5			3			1	
binary	1	1	1	1	0	1	0	1	1	0	0	1
hexadecimal	F			5				9				

to convert between octal and hexadecimal

• first convert to binary

recommendation:

- keep practising conversions between binary and hexadecimal ($\ddot{-}$) 1101
- until you can do it without looking at the table (ご)

1011

1100

1110

1111

B

С

D

F

F

some useful mathematical functions...

 $\lfloor x \rfloor$ is the 'floor' operator, giving the integer part of x $x \operatorname{div} y$ is the *integer* division operator $x \operatorname{mod} y$ is the remainder operator frac (x) gives the fractional part of x

some observations...

moving the radix point left or right is easy

- multiplying a number by its radix moves the radix point to the right
- dividing a number by its radix moves the radix point to the left

the 'units' digit is particularly easy to 'extract' from a number

• divide an integer by its radix and the remainder is the least significant digit

to convert a decimal number i.f to radix r

- convert one digit at a time
- convert the integral part and fractional part separately

informally:

for the integral part *i*

- repeatedly divide i by the radix r
- write down the remainders from *right to left*

for the fractional part \boldsymbol{f}

- repeatedly multiply the fractional part f by the radix r
- write down the integer parts of the results from *left to right*

more formally...

for the integral part *i*, convert the digits from right to left

repeat:

- isolate the least significant digit: $d \leftarrow i \mod r$ (the remainder of $i \div r$)
- write down *d* (to the left of any previous digits)
- discard the least significant digit: $i \leftarrow i \operatorname{div} r$ (integer division operation) until i = 0

example: 100.25_{10} to octal (integral part)

i	$i \operatorname{mod} 8$	$i \operatorname{div} 8$
100	4	12
12	4	1
1	1	0
$stop \rightarrow 0$	\uparrow	
	= 14	4_{8}

for the fractional part f, convert the digits from left to right

while $f \neq 0$, repeat:

- isolate the most significant digit: $d \leftarrow \lfloor f \times r \rfloor$ (integer part of product)
- write down d

(to the right of any previous digits)

• discard the most significant digit: $f \leftarrow \operatorname{frac}(f \times r)$ (fractional part of product)

example: 100.25_{10} to octal (fractional part)

$$\begin{array}{ccc} f & \lfloor f \times 8 \rfloor & \operatorname{frac} (f \times 8) \\ .25 & 2 & .0 \\ \mathsf{stop} \to .0 & \uparrow \\ & = .\mathbf{2}_8 \end{array}$$

 $\Rightarrow 100.25_{10} = 144.2_8$

example: 25.25_{10} to binary

 $\Rightarrow 25.25_{10} = 11001.01_2$

summary

binary is the basis for all data representation in digital computers

• understanding binary is important

binary data is almost always represented using hexadecimal (or octal) notation

• understanding hexadecimal is important

binary data often represents numeric information

• understanding conversions to and from decimal is important

arithmetic operations in positional number systems

• addition, subtraction, multiplication, division

unsigned binary arithmetic

limits of binary representation

• unsigned arithmetic overflow

glossary

base — (radix) the factor by which the significance of a digit changes from one position to the next.

digit position — the distance from a digit to the radix point, usually numbered so that integral digit positions start at 0 and increase to the left and fractional positions start at -1 and decrease to the right.

div - A mathematical operator that computes the integer quotient of two numbers.

floor ($\lfloor ... \rfloor$) — A mathematical operator that gives the largest integer that is no greater than the given real number.

frac - A unary mathematical operator that gives the fractional (non-integral) part of a real number.

fractional part — the part of a number to the right of the radix point, ignoring any integral part, whose value is between 0 and 1.

integral part — the part of a number to the left of the radix point, ignoring any fractional part.

least significant digit — the digit in a number (or part of a number) that has the smallest weight, usually the rightmost.

mod — a mathematical operator that gives the remainder on division of two integers.

glossary

most significant digit — the digit in a number (or part of a number) that has the largest weight, usually the leftmost.

radix — (base) the factor by which the significance of a digit changes from one position to the next.

radix point — the symbol separating the integral and fractional parts of a number. Often a dot ('.' or '.') or comma (',').

significance — the relative importance of the contribution of a digit to the overall value of a number. Significance usually increases towards the left.

weight — the amount a digit is multiplied to obtain its contribution to the overall value of a number. Weights usually increase to the left, and decrease to the right, by a factor of the radix.