Computer Mathematics

Week 4
Signed integer representations and arithmetic

BrEEHFAE
Sy RENJTIM
KYOTO UNIVERSITY of ADVANCED SCIENCE

Department of Mechanical and Electrical System Engineering

,,,,,,,,,,,,,,,,,,,,,,,,, Iast week
Central Processing Unit
data
I bus
Iie |D*R| ~-»[PCP{AR }»—l—ad;rﬁﬁi
. e R i il vy V
range of representable numeric values registers Y o
CuU 12
unsigned arithmetic o Random
PSR Access
e terminology * vemen
PY baS|C mathematlcal Operatlons _Universal Serial Bus Input / Output «—FCiBus
4 4 4 Controller 4 4
— _|_ . >< . Mouse Keyboard, HDD GPU, Audio, SSD

— In decimal
— in binary

integer overflow
e conditions and detection

this week
Central Processing Unit
N
. . . ¢ ¢ address
binary representations of signed numbers R [oR] ;—--»|F;c+»|AARF»—|—.vbus |
merement f.- |- Lot] |
e one’s complement, two’s complement = —
. . . cu | >
e sign-magnitude, biased :
" see) Il?anldon%
signed binary arithmetic T oo
e negation Lt
Universal Serial Bus > Input / Output » PCIIBus |
® addition, SUbtraCtion I\v/louseKe)loard,HD; controfier GPLIAudio,S!D

e signed overflow detection
e multiplication, division

width conversion

e Sign extension

bonus material, if there is time and interest...
¢ floating-point numbers

KUAS i
one’s complement representation

the idea: to negate a n-bit number, invert (or ‘flip’) each bit

this is equivalent to subtracting it from 2™ — 1
—x=2"-1—=x

e e.g., with 4-bit numbers, -5=2% -1 -5=15-5

p—t

1 1 1 =2—1=15q
—0 1 0 1 =549
1 0 1 0O note: borrows will never occur

using n bits, the representable range is

—(2mt—1) ... 2nt -1

KUAS .
one’s complement representation

advantages
e negation is efficient, and can always be performed
e the most significant bit represents the sign

disadvantages
e there are two representations of 0, one of them negative (-0 = 2" — 1)
e binary arithmetic operations do not work without some adjustment

one’s complement is rarely used as a final representation, but. ..

using it as a temporary representation significantly simplifies the ALU
¢ which is why we are studying it today
(we will use it later, when designing hardware to perform subtraction)

KUAS i
two’s complement representation

the idea: to negate a n-bit number, subtract it from 0

—r=0—=x (duh!)

but note: because 2" = 0 (for n-bit numbers) we have
—r=0—ax=2"—2x
(which can be peformed using unsigned numbers, which are easy to deal with)
r and —z = (2" — x) are additive inverses of each other
r+(—x)=x+ (2" —x2)=2" =0 (for n-bit numbers)

e unsigned addition/subtraction work on 2’s complement numbers without
adjustment

e this is easy to verify; e.g., with 4-bit numbers, -5 =2* -5 =16 — 5

0 00 0 =2*=1610=0 0 1 0 1 = 540
—0 1 0 1 = 519 verifying . .. +1 0 1 1 =-510
1 0 1 1 =-510 0O 0 0 O yay!

KU

two’s complement representation

using n bits, the representable range is

—(2m Y . 2nt o

advantages
e the most significant bit represents the sign
e there is only one representation for zero, and it is non-negative
e signed addition/subtraction are the same as for unsigned integers

disadvantages
e negation is more complex than with one’s complement
e one representable value, —(2"~ 1), cannot be negated

two’s complement is by far the most widely-used signed binary integer representation

7

KUAS . :
two’s complement radix conversion

positive numbers can be converted just like unsigned numbers

negative numbers can be converted in either of two ways
e negate the number (make it positive), convert it, then prepend a ‘—’; or
e consider the sign bit to have value —(2"~!) and convert as usual

for example, if n = 4 then —5 = 1011,

sign bit has negative weight i

_23 22 21 20
-8 4 2 1
X 1 o 1 1
—8+2+1=-5

to see why this works
e calculate 0 — 5 using three bits
e consider what amount was borrowed from the 4™ position by the 3" position
¢ that value must be the positional weight of the sign bit

KUAS :
negation

let’s write the two’s complement of x as —x, and the one’s complement as ~x

two’s complement negation can be performed easily by noticing that

—x = 2" —=z
= 2"—-1—2)+1
= ~zx+1

in other words, to find the two’s complement of x
e invert each bit in z (which gives us the one’s complement of x) and then
e add one

for example, to negate 5:

= ~5 (invert bits to get one’s complement)
(add one)
= —5 (two’s complement)

+
o = O
oo o =
=IO = O
== O

KUAS
addition, subtraction, and overflow

two’s complement addition and subtraction are the same as for unsigned
e because —x is the additive inverse of x, modulo 2"

unsigned overflow is not the same as signed overflow

e the carry out from the sign bits does not indicate signed overflow

the conditions for signed overflow during addition and subtraction are

overflow conditions

iInputs result
T Y r+vy x—Y
+ve +wve | —ve
+ve —wve —ve
—ve +ve +ve
—ve —ve | +ve

(overflow is impossible in the four cases left blank)

one way to detect overflow is therefore to check the sign bits of inputs and result

10

KUAS T . : :
multiplication, division, and sign extension

signed multiplication is the same as unsigned multiplication, however
e the product may require 2n bits, so
e both operands are sign-extended to 2n bits before being multiplied

to sign extend, the sign bit is copied to the left as many times as required

0101 5 (as a 4-bit number) 1011 —5 (4-bit number)
00000101 5 (as an 8-bit number) 11111011 -5 (8-bit number)
copy < T copy < T

s1gn s1gn

signed division can be performed in two ways

e convert operands to positive, then adjust the signs of quotient/remainder
(the remainder conventionally has the same sign as the dividend)

e using a slightly more complex algorithm (described in the lecture notes)

11

KU

other sighed number representions

the magnitude of a number tells us how far from 0 it is on the number line

the sign of a number tells us on which side of 0 it is located

25 : 25 +
------------------ | REETEPERERECPERRE] =

< Y| | | | L v
25 0 +25

the magnitude of a number n is written |n|

12

KU

sign-maghnitude representation

the idea: use a symbol/digit to represent the sign, just like in decimal

in decimal
e leftmost ‘position’ indicates the sign (‘+’ to the right, ‘-’ to the left, of 0)
e the other positions indicate the magnitude (the distance from 0)

S1gN
¥ - 25 : 25 .+
positive + 25 A By g
negative — 25 <« ' | ' L v
£ 4 -25 0 +25

magnitude
In binary
e most significant (leftmost) bit represents the sign (‘0’ positive, ‘1’ negative)
¢ the other bits represent the magnitude

S1gmn
4
positive 0101 =+4519
negative 1101 = —510

13

KU

sign-maghnitude representation

using n bits (including sign), the range of representable values is symmetrical

—2"t-1)...0...2"t—1

advantages
e easy to convert to/from decimal
e negation is trivial, and can always be performed
e simplifies some operations iff arithmetic is always signed, e.g:

— multiplication/division on the magnitudes
— logic on the signs to compute the sign of the result

disadvantages

e two representations for zero (+0 and —0)
— reduces representable range by 1

e algorithms (and hardware) are more complex
— signed and unsigned arithmetic are different

almost never used (for integers)

14

KUAS . -
biased representation

the idea: add a fixed offset k to every number (also called ‘excess-k representation’)
e store signed numbers as n + k£ (no sign bit required)
e subtract k£ from the stored value to obtain n, the original signed value

typically, k = 2"~! is chosen so that 0 falls in the middle of the range

using n bits, the range of representable values is

—k ...2" =-1—k

advantages
e there is only one representation for 0

e the representable range is contiguous
— unsigned comparisons give correct results for signed numbers
— the magnitude and sign of differences are very easy to compute

disadvantages
e arithmetic operators are difficult to implement
e 0+ 00 (except when k& = 0, which is useless)

e negation requires subtraction (—x = 2k — x), and cannot always be performed
15

KU

floating-point humbers

floating-point numbers are stored as = = s x 2¢ where
e sis a signed significand, in the range 1 < |s| < 2, and
e cis a signed binary exponent, in the range —126 < e < 127

e 1S stored using biased representation

e the difference between exponents is important during addition/subtraction
— it tells us how far to shift the binary points to align them

s is stored using sign-magnitude representation, as a sign s and fraction f
e aligning binary points during addition/subtraction is easier without a sign

e multiplication and division are simplified
— multiply/divide significands directly
— add/subtract the exponents, adjust by 1 if necessary

16

KUAS . .
floating-point numbers

sign exponent+127 1. fraction-1

|||||||||||||||||||||||||||||
31 30 23 22 0

the significands are normalised in the range 1.0000...1.1111

e they always begin with 1., so the leading 1 is made implicit

e one extra bit of precision is gained ‘for free’

e a special representation for zero (e = 0, f = 0) has to be used
the value of the stored number is therefore

(=1)% x 1.f x 267127
advantages
¢ floating point numbers can be compared as if they were sign-magnitude integers

disadvantages

e ¢ =0 and e = 255 are special (infinity, ‘not a number’, and denormalised
numbers)

e zero can be positive or negative .

KUAS
summary

signed integers can be stored many ways
¢ each method has some advantage that makes it useful somewhere

biased and sign-magnitude representations mostly used within floating-point numbers
e good for representing the relative importance of two exponents
e allow integer comparisons to work for floating point numbers
e simplify arithmetic where binary points have to be shifted into alignment

one’s complement is easy (flip bits) and useful (2’s complement negation), but
e two representations of zero
¢ not often used as a final representation

18

KU

summary

two’s complement has many desirable properties
e most widely-used signed integer representation

negating a number gives you its additive inverse
e negation is easy: take one’s complement then add one

¢ signed arithmetic ‘just works’, even using unsigned algorithms, but. ..

overflow detection is different from signed integers
e can be done by comparing operand and result signs

width conversion is done by sign extension
e copy the sign bit left to fill the number of bits required

radix conversion is just as easy as for unsigned numbers
e treat the sign bit as if it had positional value — (2"~ 1)

19

information theory
¢ information content
e Hamming distance

source coding vs. channel coding

error detection
e motivations
e parity
e cyclic redundancy checks

error correction
e motivations
e block parity
¢ Hamming codes

next week

Central Processing Unit

data
|) bus
A 4 A 4 address
IR [DR] :-»[PcP{ARH bus
7 W i i
\ncremgnct - I_._- I I ' v
registers 0 : : :
4 : : :
N —
CuU 16
20
24
28
operation ! ! !
select Random
PSR Access
? Memory
vV VY
Universal Serial Bus Input / Output " ClBus
v v v Controller Y V V VY

Mouse Keyboard HDD

GPU Audio SSD Net

20

KU

homework

practice two’s complement radix conversions
practice two’s complement negations

practice two’s complement arithmetic
e including signed and unsigned overflow detection

reinforce your knowledge
e do you know about arrays (or lists) in Python?

e write some Python functions that perform positional arithmetic
— digit by digit, with explicit carry and borrow
— use any radix you like, but definitely try binary
(all the computers in EPL1/CC207 have Python installed)

ask about anything you do not understand
e it will be too late for you to try to catch up later!
e | am always happy to explain things differently and practice examples with you

21

glossary

additive inverse — of a number z is that number y such that x + y = 0. In other words, y = —x. In modular
arithmetic, two positive numbers can be additive inverses of each other. Taken modulo 2™, x and 2™ — x are additive
inverses, which is the basis for two’s complement arithmetic.

denormalised — a number that is no longer normalised. In floating-point representation, a significand that does not
have a single implicit leading 1 before the binary point is a denormalised number.

exponent — the ‘power’ to which another number is raised. In ¢, e is the exponent, describing how many times x
should be multiplied by itself. In floating-point representation, the exponent indicates the power of 2 by which the
significand must be multiplied to obtain the true magnitude of the represented number.

flipping — a more casual term for ‘inverting’.

inverting — changing the state of something, often between either of two states. In binary arithmetic and logic,
inverting a bit means changing 0 — 1 or1 — 0.

iff — a concise way of writing ‘if and only if’.

normalised — a number that has a standard form or which falls within a standard range. In floating-point
representation, a normalised significand s is always in the range 1 < s < 2; in other words, when written as a binary
fraction, there is a single 1 to the left of the binary point.

sign-extend — widening a binary number to a larger number of bits by replicating the sign bit to the left until the desired
width is obtained.
22

KU

glossary

significand — the part of a floating point number which provides the digits without regard to the position of the binary
point. Multiplying the significand by 2 to the power of the exponent yields the true magnitude of the represented number.

useless — pointless, purposeless, impractical, ineffectual, unproductive, inutile, worthless, inadequate, no good, or a
dead loss. For example, in an excess-k biased, signed, integer representation, the fact that 0 + 0 = 0 provided £ = 0
is useless because it is impossible to represent any negative number in that representation.

23

