
Computer Mathematics

Week 8
Combinational logic circuits

Department of Mechanical and Electrical System Engineering



last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

the mathematics of logic circuits

� the foundation of all digital design

Boolean logic

� when 0 and 1 represent true and false

Boolean algebra

� Boolean functions

� canonical forms

simplification of Boolean expressions

� de Morgan’s laws

2



this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

combinational digital circuits

wires, signals and connections

logic gates

� and, or, not

� nand, nor, xor

gate-level arithmetic operations

� how logic turns into addition

3



logic gates

logic gates implement Boolean operations

� one or more inputs, one or more outputs

� outputs are a logical function of the inputs

� logic circuits use electrical engineering notation, not mathematical notation

NOT gate AND gate OR gate

a a a abb
a a+bb

XOR gate

a⊕ ba
b

circle = invert

bar = ‘not’

another useful gate: exclusive-or (XOR) a b a⊕ b

0 0 0

0 1 1

1 0 1

1 1 0

� not equivalent, or modulo-2 addition/subtraction

� very useful for arithmetic operations

beware: ab = (a · b)′, but a b = a′ · b′ = (a+ b)′

� use an explicit ‘·’ if it helps readability, e.g., a · b

4



more logic gates

the small circle indicates an inversion

NOT gate (inverter)

a a
circle = invert

bar = ‘not’

buffer (no change)

a a
� an active-low signal (‘not’ function)

� written with an overbar

it can be placed on any output (or input)

� when ‘true’ that output (or input) will be 0

� NAND = ‘not AND’, NOR = ‘not OR’, XNOR = ‘not XOR’

NAND gate NOR gate

a abb
a a+bb

XNOR gate

a⊕ ba
b

NAND

a b ab

0 0 1

0 1 1

1 0 1

1 1 0

NOR

a b a+ b

0 0 1

0 1 0

1 0 0

1 1 0

XNOR

a b a⊕ b

0 0 1

0 1 0

1 0 0

1 1 1

5



wires, signals, and connections

signals

� a signal is anything that conveys a logic value (or other message)

wires

� a wire carries a signal between two or more points in an electrical circuit

� all points connected by the wire have the same logic value

named signals a

named signalwire, signal
� any signal can be given a name

� circuit inputs and outputs are usually named

� intermediate signals can be named, to show logical relationships

connections
a

connection

a
a

a

no connection

a
� crossing wires have no connection

� unless an explicit connecting dot is present

6



logic circuits

Boolean logic and functions

� logical operators perform computation

� operands transmit values implicitly (results of · to input of + below)

� variables transmit values explicitly (e.g., function parameters to expression)

equal(a, b) = a · b+ a′ · b′

logic circuits

a
b

a·b

a·b

a·b + a·b
a

b

� logic gates perform computation

� wires transmit values explicitly

� signal names can transmit values implicitly
(a and b could be generated elsewhere in the circuit above)

� signals typically flow left-to-right (with frequent exceptions)

7



abstraction — functional blocks

Boolean logic and functions

� functions provide abstraction

equal(a, b) = ab+ a′b′

any-two(a, b, c) = equal(a, b) + equal(a, c) + equal(b, c)

e = any-two(x, y, z)

logic circuits

� functional blocks (components) provide abstraction

a
b

a b

a b

a b + a b
a

b

a
b equal= a=b

a
b equal

equal

equal

c e

abstract as
functional block reuse

8



Boolean function to logic circuit

e.g., single-bit addition of two inputs sum
a b co s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

� sum is 1 if exactly one of a and b is 1 (i.e., a 6= b ⇔ a⊕ b)

� carry is 1 if a and b are both 1 (i.e., a · b)

canonical form of each output

s = ab′ + a′b = a⊕ b

co = ab

translated into gates

a
b sum

carry out

this is a half adder

� no provision for carry in

� not useful for multi-bit additions
9



addition (single-bit)

single-bit addition of three inputs

sum
ci a b co s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

� sum is 1 if an odd number of inputs are 1

� carry is 1 if two or more inputs are 1

canonical form of each output, simplified, translated into gates

s = c′iab
′ + c′ia

′b+ cia
′b′ + ciab

= c′i(ab
′ + a′b) + ci(a

′b′ + ab)

= c′i(a⊕ b) + ci(a⊕ b)′

= ci ⊕ a⊕ b

co = c′iab+ cia
′b+ ciab

′ + ciab

= (c′i + ci)ab+ ci(a
′b+ ab′)

= ab+ ci(a⊕ b)

COUT

S
A
B

CIN

A⊕Β
A⊕ B⊕ CIN

CIN• (A⊕Β)

A•Β CIN• (A⊕Β) +Α•Β

=
COUT

S
A
B

C
IN

this is a full adder

10



homework

practice drawing logic circuits for Boolean functions

consider some of the gates we did not study in detail

� how many of the logic circuits of this week can you make
– using only NAND gates?
– using only NOR gates?

reinforce your understanding

� write a Python program to simulate a multi-bit adder
– consider the logical operations affecting each signal
– compute the output of each gate based on its input(s)
– propagate outputs to inputs at every simulation time step

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you

11



next week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

signals and busses

gate-level multi-bit logical operations

� bitwise: and, or, not

gate-level multi-bit arithmetic operations

� addition, subtraction (unsigned, 2’s complement)

1-of-N selection

� multiplexers

12



glossary

active-low — a signal that is considered ‘true’ when 0.

active-high — a signal that is considered ‘true’ when 1.

adder — a logic circuit that implements 2’s complement addition between two words of data.

carry — a processor status bit indicating that the last arithmetic operation generated an unsigned overflow (a carry out
of the MS bit).

exclusive-or — an ‘or’ operation that does not allow both inputs to be the same value.

full adder — an adder that takes three single-bit inputs (two digits and a carry in) and produces two single-bit outputs (a
sum and a carry out).

functional block — a high-level abstract component in a digitl circuit that represents a reusable pattern of lower-level
components or gates.

gate — an logic circuit component that implements a fundamental Boolean operation.

half adder — an adder that takes two single-digit inputs and produces a sum and carry output.

signal — anything that conveys a logic value from one place to another. In logic circuits, a signal is carried by a wire.

wire — a connection between several points in a circuit that forces them to all have the same logical value.

13


