
Computer Mathematics

Week 9
Parallel logic circuits

Department of Mechanical and Electrical System Engineering

last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

the mathematics of logic circuits

� the foundation of all digital design

Boolean logic

� when 0 and 1 represent true and false

Boolean algebra

� Boolean functions

� canonical forms

simplification of Boolean expressions

� de Morgan’s laws

2

this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

combinational digital circuits

signals and busses

logic gates

� and, or, not

� nand, nor, xor

gate-level multi-bit logical operations

� bitwise: and, or, not

gate-level multi-bit arithmetic operations

� addition, subtraction (unsigned, 2’s complement)

1-of-N selection

� multiplexers

3

review: addition (single-bit)

single-bit addition of three inputs

inputs sum
ci a b co s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

� sum is 1 if an odd number of inputs are 1

� carry is 1 if two or more inputs are 1

canonical form of each output, simplified, translated into gates

s = c′iab
′ + c′ia

′b+ cia
′b′ + ciab

= c′i(ab
′ + a′b) + ci(a

′b′ + ab)

= c′i(a⊕ b) + ci(a⊕ b)′

= ci ⊕ a⊕ b

co = c′iab+ cia
′b+ ciab

′ + ciab

= (c′i + ci)ab+ ci(a
′b+ ab′)

= ab+ ci(a⊕ b)

COUT

S
A
B

CIN

A⊕Β
A⊕ B⊕ CIN

CIN• (A⊕Β)

A•Β CIN• (A⊕Β) +Α•Β

=
COUT

S
A
B

C
IN

this is a full adder

4

addition (multi-bit)
two full adders make a two-bit adder

COUT

S

A B

CINCOUT

S

A B

CIN

S0S1

COUT CIN

A0

B0

A1

B1

A

B

A+B

to make a N -bit adder, just daisy chain N single-bit full adders together

COUT

S

A B

CINCOUT

S

A B

CIN

S0S1

CIN

A0

B0

A1

B1

COUT

S

A B

CINCOUT

S

A B

CIN

SN-2SN-1

COUT

AN-2

BN-2

AN-1

BN-1

A

B

A+B

(this is called a ripple-carry adder — is there a limit to N?)
5

abstraction — busses

writing the N seperate wires (and adders) for each bit is tedious

� all N wires carrying Ai spend most of their time going to the same places

� similarly for B and S

a bus carries many individuals in parallel between two points

� collect all the Ai together and put them on a single bus called A

� similarly for B and S

COUT

S

A B

CINCOUT

S

A B

CIN CIN

A0

B0

A1

B1

COUT

S

A B

CINCOUT

S

A B

CIN

AN-2

BN-2

AN-1

BN-1

A

B

S

COUT

N

N

N S0S1SN-2SN-1

= CINCOUT

S

A B

CIN

A B

S

COUT

N N

N

6

busses

busses are thicker than wires BUS
N

WIRE

busses make wide turns N

wires joining or leaving a bus do so at an angle N

connecting two busses sometimes uses strange symbols to indicate what is
happening

� we will just draw a dot, as with wires N

7

bitwise (multi-bit) logic operations

bitwise logical operations apply a logical operation in parallel to all the bits in a word

e.g., whereas ‘not’ inverts a single logical value

� 0→ 1 and 1→ 0

bitwise ‘not’ inverts all the bits in a word ∼ 01101001
10010110

� it is the ‘one’s complement ’ operation

similarly for AND, OR, and XOR AND OR XOR

11110000 11110000 11110000
& 00110011 | 00110011 ⊕ 00110011

00110000 11110011 11000011

� AND clears (or selects) bits

� OR sets bits

� XOR inverts bits

8

subtraction

combine an adder with a bitwise complement to make a subtractor

N

0COUT

S

A B

CIN

A B

A+B

COUT

N N

N

COUT

S

A B

CIN

A

B

A + ~B = A-B-1

COUT

N

N

N

N

N

0 COUT

S

A B

CIN

A

B

A-B

COUT

N

N

N

N

1

B

~B

but for correct results, we need to add the 2’s complement of B

to turn a 1’s complement into a 2’s complement negation, just add 1

� e.g., by setting CIN = 1

� CIN = ‘not borrow’ when performing subtraction

9

selection

are separate adder and subtractor required?

� they are almost identical, except for the complemented B input

� if we could choose between B and ∼B, one adder would be enough

COUT

S

A B

CIN

A

B

A+B, A-B

COUT

N

N

CIN

0

1

N

N

SUB / ADD
input
select

MUX

multiplexer

(from instruction decoder)

B or ~B
B

~B

a multiplexer connects one of several inputs to its output

� a select input specifies the input to choose

� n-bit select input can choose between 2n inputs
– 1 select bit chooses between input 0 or 1
– 2 select bits choose between inputs 0. . . 3, etc.

10

multiplexers

2-input multiplexer SEL A B OUT

0 x − x

1 − y y

(‘− ’ = ‘don’t care’)

= SEL A B OUT

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

� truth table

� Karnaugh map

� circuit

� functional block

1

0

1

00 01
AB

SEL

P
MUX

1011

1 1

1

Q

P = SEL · A
Q = SEL · B

OUT = SEL · A+ SEL · B

SEL

A

B

OUT
0

1
MUX OUT

SEL

A

B

11

arithmetic and logic unit

CIN

S

A B

COUT

A

B

N

CIN

0

1

N

N

SUB / ADD

MUX

00 01 10 11

N NN

N

from PSR

to PSR

RESULT

OPERATION 2

from registers, IR, DR

from registers

from instruction decoder

to registers

3

OP2

A

B

RESOP

Carry out

Carry in

Carry out

MUX

0 A+B
1 A&B
2 A|B
3 A⊕ B

4 A-B
5 A&~B
6 A|~B
7 A⊕ ~B

OP0, OP1

12

a typical machine program
search an array to find the index of a particular value, assuming that

� the variable array holds the address of the start of the array

� the variable length holds the length of the array

� the variable value holds the target value that we are searching for

� the index of the element should be returned in register r0

� if the target is not found, -1 should be returned in r0
label operation operands comment

load r1, array load array address into register 1
load r2, length load array length into register 2
load r3, value load target value into register 3
set r0, 0 the next index to check is held in r0

next: compare r0, r2 check if we reached the end of the array
jump_if_equal fail if so, target was not found
load r4, r1[r0] fetch next element from array
compare r4, r3 compare it to the target value
jump_if_equal done if found, return the corresponding index in r0

→ add r0, r0, 1 increment the index
jump next continue searching at the next index

fail: set r0, -1 index -1 means ‘target not found’
done: halt r0 contains index of target element, or -1

13

instruction execution

machine (‘fetch-execute’) cycle:
repeat

1. fetch instruction
� copy PC to address bus
� read from memory into IR

2. decode instruction
� CU inspects the IR

3. fetch operand(s)
� move data from memory into DR, if re-

quired
� present DR and/or registers to ALU

4. execute instruction
� ALU performs operation on data

5. store result
� write ALU output into register or memory

6. update PC
� with the address of the next insutruction

forever

Central Processing Unit

Address
Bus

Data
Bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

DR: data register, holds data read from memory while ALU performs an operation
AR: address register, holds address for memory read/write operation

14

a typical machine instruction

add register 1 to register 2, putting the result in register 3

add r3, r2, r1
CU

+

registers

PSR

operation

r0
r1
r2
r3
r4
r5

11
31

123
11
31

42

operation destination operand1 operand2

IR

R2

R1
source and
destination

R3

00101010 00000011 00000010 00000001
 opcode dest reg src1 reg src2 regdecode

C=0, .N=0, O=0, Z=0

15

processor status results

also of interest: ‘flags’ for updating the processor status register

� was the result zero, or negative?

� did unsigned or signed overflow occur?

the result was zero if none of the result bits is 1 Zero

RESULT0

RESULTN-1

. . .

circle = invert, NOT OR = NOR

the result was negative if the most-significant result bit is 1 NegativeRESULTN-1

unsigned arithmetic overflow (carry) occured in the adder if
CarryCOUTN-1

� the carry out of the MS bit of the result was 1

signed arithmetic overflow occured in the adder if

COUTN-1

COUTN-2 Overflow� the carry in to the MS bit of the result 6= the carry out of it

the condition for signed overflow is maybe a little subtle?

16

processor status results — signed overflow

signed arithmetic overflow occured in the adder if

� the carry in to the MS bit of the result 6= the carry out of it

⇒ the sign of the result is wrong (?)

consider a signed, 8-bit, 2’s complement addition:

0xxxxxxx both positive: carry out of MS bit is always 0
+ 0xxxxxxx if carry in is 1, the sign will change⇒ overflow

0← 0 ← 0 =⇒ ok

0← 1 ← 1 =⇒ overflow

1xxxxxxx both negative: carry out of MS bit is always 1
+ 1xxxxxxx if carry in is 0, the sign will change⇒ overflow

1← 1 ← 1 =⇒ ok

1← 0 ← 0 =⇒ overflow

0xxxxxxx if carry in to MS bit is 0, carry out is also 0
+ 1xxxxxxx if carry in to MS bit is 1, carry out is also 1

0← 1 ← 0 (overflow never occurs with numbers of opposite signs)
1← 0 ← 1

17

ALU with processor status outputs

CIN

S

A B

COUT

A

B

N

CIN

0

1

N

N

SUB / ADD

MUX

00 01 10 11

N NN

N

from PSR

to PSR

RESULT

OPERATION 2

from registers, IR, DR

from registers

from instruction decoder

to registers

3

SUB / ADD

A

B

RESOP

Carry out

Overflow
Zero

Carry in

Negative

Zero×N

Negative
RESN-1

COUTN-1

COUTN-2 Overflow

2

Carry out

MUX

0 A+B
1 A&B
2 A|B
3 A⊕ B

4 A-B
5 A&~B
6 A|~B
7 A⊕ ~B

18

optimised 4-bit ALU ‘slice’ with 32 operations

19

things we did not consider

shift and rotate instructions

� moving patterns of bits to the left or right, with or without wrap-around

� left as an exercise

multiply instructions

� usually requires synchronous logic (next week)

divide instructions

� always requires synchronous logic (next week)

tri-state logic

� logic that can be 0, 1, or high-impedance

� used for bi-directional signals

� beyond the scope of this introductory course

20

next week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

sequential digital circuits

stateful logic

� level-triggered devices

� latches

clocks

� edge-triggered devices

synchronous logic

� flip-flops

� registers and memory

CPU operation according to the clock cycle

21

homework

practice drawing logic circuits for Boolean functions

consider some of the gates we did not study in detail

� how many of the logic circuits of this week can you make
– using only NAND gates?
– using only NOR gates?

reinforce your understanding

� write a Python program to simulate a multi-bit adder
– consider the logical operations affecting each signal
– compute the output of each gate based on its input(s)
– propagate outputs to inputs at every simulation time step

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you

22

glossary

active-low — a signal that is considered ‘true’ when 0.

active-high — a signal that is considered ‘true’ when 1.

adder — a logic circuit that implements 2’s complement addition between two words of data.

bus — a collection of signals all travelling between the same two points.

carry — a processor status bit indicating that the last arithmetic operation generated an unsigned overflow (a carry out
of the MS bit).

complement — a bitwise logical operation that inverts every bit in a word.

daisy chain — connecting two or more devices or circuits in a linear fashion so that some output from one feeds into
the input of the next.

exclusive-or — an ‘or’ operation that does not allow both inputs to be the same value.

flag — a single bit in the processor status register.

full adder — an adder that takes three single-bit inputs (two digits and a carry in) and produces two single-bit outputs (a
sum and a carry out).

functional block — a high-level abstract component in a digitl circuit that represents a reusable pattern of lower-level
components or gates.

gate — an logic circuit component that implements a fundamental Boolean operation.
23

half adder — an adder that takes two single-digit inputs and produces a sum and carry output.

multiplexer — a digital circuit that connectes one of 2n input signals to its output according to a n-bit select input.

negative — a processor status bit indicating that the result of the last arithmetic operation was negative, assuming the
values involved were 2’s complement integers.

overflow — a processor status bit indicating that the result of the last arithmetic operation generated a signed overflow
(the result has the wrong sign), assuming the values involved were 2’s complement integers.

processor status register — a register in the CPU holding several flags indicating whether the last arithmetic operation
produced a zero or negative result, or whether an unsigned or signed overflow occured.

ripple-carry adder — an adder constructed by daisy chaining several single-bit full adders together. The name arises
because the sum and carry out at each bit position n cannot be computed until the carry out at position n− 1 has been
computed.

select — an input to a multiplexer that selects which of several other inputs should be connected to the output.

signal — anything that conveys a logic value from one place to another. In logic circuits, a signal is carried by a wire.

subtractor — a logic circuit that implements 2’s complement subtraction between two words of data.

wire — a connection between several points in a circuit that forces them to all have the same logical value.

zero — a processor status bit indicating that the result of the last arithmetic operation generated a zero result (none of
the result bits was 1).

24

