
Computer Mathematics

Week 10
Sequential logic circuits

Department of Mechanical and Electrical System Engineering



last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

combinational digital circuits

signals and busses

logic gates

� and, or, not

� nand, nor, xor

gate-level logical operations

� bitwise: and, or, not

gate-level arithmetic operations

� addition, subtraction (unsigned, 2’s complement)

1-of-N selection

� multiplexers

2



this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

sequential digital circuits

stateful logic

� level-triggered devices

� latches

clocks

� edge-triggered devices

synchronous logic

� flip-flops

� registers and memory

CPU operation according to the clock cycle

3



combinational vs. sequential logic

combinational logic

COUT

S

A
B

CIN
� outputs depend on current inputs

� no memory

� stateless

sequential logic
OUT

IN

UPDATE

state� outputs depend on current and past inputs

� memory (history) of previous inputs

� stateful

4



gate delay — adders
full adder: 3 gates to sum and carry out, 2 gates from carry in to carry out

COUT

S
A
B

CIN

A⊕Β
A⊕ B⊕ CIN

CIN• (A⊕Β)

A•Β CIN• (A⊕Β) +Α•Β

tg tg tg

COUT

S
A
B

CIN

A⊕Β
A⊕ B⊕ CIN

CIN• (A⊕Β)

A•Β CIN• (A⊕Β) +Α•Β

tg tg tg

daisy-chained...

COUT

S

A B

CINCOUT

S

A B

CIN

S0S1

CIN

A0

B0

A1

B1

COUT

S

A B

CINCOUT

S

A B

CIN

SN-2SN-1

COUT

AN-2

BN-2

AN-1

BN-1

A

B

A+B

N is limited by gate delay = tg

� from A, B, CIN changing, COUT is available 3× tg later

� from CIN changing, COUT is available 2× tg later

� final COUT is available (1 + 2N)× tg after inputs change
5



gate delay — multiplexer

2-to-1 multiplexer

SEL

A

B

OUT
1

0
MUX OUT

SEL

A

B

tg tg tg

gate delays from inputs to output

� from SEL changing, 3× tg to OUT being stable

� from data input changing, 2× tg to OUT changing

this delay can be exploited to produce memory!!

6



memory — latches

one way to make memory: use a multiplexer 0

1
MUX OUT

SEL

A

B

IN

IN

GATE

OUTD

G

G

Q

� connect the output back to one of the inputs
– e.g., feedback from the output to input A

� when SEL is 1, input B is copied to output

� when SEL is 0, output is copied (via A) back to itself
– the output is held constant, independent of B

this is called a transparent latch

� when the G (gate) input is 1, D (input) is copied to Q (output)
– the gate is ‘open’, the device is transparent

� when the G (gate) input is 0, Q (output) remains unchanged
latch on to/onto

1. To get hold of; obtain.
2. To cling to.

– the device has ‘latched onto’ the value of B
* from the moment the G signal changed from 1 to 0

7



the problem with latches

let’s try to make a one-bit counter using a latch

CLOCK

D Q

G

OUTPUT

1-bit counter (divide-by-2)� latch stores current counter value

� a clock signal causes the counter to update

when the clock signal is low

� the output is held constant by the latch

� the inverter computes the next desired output

when the clock signal is high

� the computed next output is copied to the output

� the inverter computes the next desired output (inverse of the current output)

� the next output goes through the ‘open’ latch and contradicts the current output

clock

Q (output)

D 0

1

0

1

1

0

0

1

oscillation

unpredictable result

8



level- vs. edge-triggering

in a level-triggered system, when the clock is high

� the outputs can change once, and once only

� until the clock goes low again, closing all the latches

this is not very useful

much better would be an edge-triggered system

� clock ticks coincide with a specified clock edge
– e.g., a clock transition from 0 to 1 (the rising edge)

� a snapshot of the input is taken at that instant, and becomes the new output

� the inputs can change arbitrarily at any other time, because. . .

� the output always reflects the input at the last clock tick

cycle n cycle n+1

input state captured at tick
copied immediately to output

clock tick

input can change between ticks
output does not change between ticks

etc...

clock tick clock tick

9



synchronous logic

at the start of each clock cycle

CLOCK

D Q

combinational logic
computes next state

current state captured in
synchronous register

synchronising clock

1-bit counter (divide-by-2)

little triangle means
"edge-triggered clock input"

� the state of the machine is captured in registers

� computation of next state begins

‘all’ we need is an edge-triggered register

cycle n cycle n+1

state computed in
cycle n-1 is captured
in synchronous registers

combinational logic begins
to compute new state for
cycle n

clock tick
state computed in
cycle n is captured
in synchronous registers

combinational logic begins
to compute state for
cycle n+1

etc...

10



synchronous logic — register model

let’s construct an edge-triggered register

� using a pair of level-triggered latches

when the clock is low

CLOCK = 0

OUTPUTINPUT

CLOCK = 1

OUTPUTINPUT

CLOCK = 0

OUTPUTINPUT

CLOCK = 1

OUTPUTINPUT

...B A...B

B... BB

...C B...C

C... CC

tick

tick

open gate closed gate captured state

changing state

X

...

specific stateX

input gate output gate

� the input gate is open

� the output gate is closed

repeat:

when the clock goes high (ticks)
� the input gate is closed

– the inputs are captured
� the output gate is opened

– captured inputs are sent to output

when the clock goes low
� the output device is closed

– captured outputs remain stable
� the input device is opened

11



synchronous logic — register implementation

CLOCK

D Q

G

OUTPUTD Q

G

INPUT
A B =

CLOCK

D Q OUTPUT

tick tick

GA

DB = QA

DA

QB

GB

clock

open open open open

open open open

tick

this is a flip-flop, a 1-bit synchronous register

� while one side is ‘flipping’, the other side is ‘flopping’

12



synchronous logic example — counters

CLOCK

D Q OUTPUT

1-bit counter (divide-by-2)

clock

Q (output)

D 0

1 0

1 1

0

0

1

tick tick tick

‘cascade’ N counters to make a 2N -bit counter...

CLOCK

D Q

N-bit counter (divide-by-2N)

D Q OUTPUTD Q D Q× N

13



synchronous logic example — multi-bit registers

CLOCK

D

Q

D

Q

D

Q

D

Q

D3

Q3

D2

Q2

D1

Q1

D0

Q0

D

Q

4

4

4-bit register
D3 D2 D1 D0

Q3 Q2 Q1 Q0

the global clock signal is often omitted from the diagram

� to make the diagram easier to read

� any unconnected clock input is understood to be connected to the global clock

14



a simple CPU

PC

10

PROGRAM
MEMORY

OP CONSTANT

DECODER

REGISTER

MAIN
MEMORY

ADDR

Z

Z

R

R

OP

ADDR

ADDR DATA OUT

DATA INREAD / WRITE

DATA OUT

LD / INC

COUNTER

3 12

A B

JUMP

ENABLE

+1 LOAD

one ‘accumulator’ register

12-bit address bus

16-bit instructions and data bus

� CONSTANT is a 12-bit constant

LS 12 bits of opcode

� OP is a 4-bit opcode

LS bit = constant/memory select

instruction decoder:

� conditional load of PC

� read or write to RAM

� ALU operation

� register load R©

Z© output from ALU

� 1 when A = 0
15



a simple CPU

decoder design

� 4-bit opcode
– lowest bit selects ALU ‘B’ input: memory or constant

� eight operations
OP instruction ALU OP Z© R© READ/WRITE JUMP

ADDR - - 0 1 0
LOAD B - 1 1 0

STORE - - 0 0 0
ADD A + B - 1 1 0
SUB A − B - 1 1 0

JUMP B 1 0 1 1
JUMPZ B A=0 0 1 1

16



example program

insn binary
addr opcode op constant comment

0: 100 0 000000000010 ADDR 2 prepare to read memory address 2
1: 000 1 000000000000 LOAD read from memory to register
2: 001 0 000000000001 ADD 1 add 1 to register
3: 011 0 000000000010 STORE 2 store register into memory address 2
4: 101 0 000000000000 JUMP 0 repeat from instruction 0

equivalent high-level program (assuming count is at address 2):

while (true) {
count = count + 1;

}

17



next week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

mathematics of control

� models of stateful computation

finite state machines

� formal model

� representations

FSM applications

� pattern matching

� pattern generation

� sequencing

18



homework
study the simple CPU and example program

� simulate it on paper to see how it works

� one instruction at a time

reinforce your understanding

� write a simulator for the simple CPU in Python
– model the current state of the machine
– inpect the current instruction
– compute the next state of the machine
– update the current state
– repeat

� print the state at each step

� run a simple program

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you
19



glossary

clock — a periodic signal that synchronises the operation of elements within a logic circuit.

complemented — inverted, or ‘flipped’.

edge-triggered — a device that performs its operation when a clock signal changes state.

edge — the vertical part of a square-shaped waveform.

feedback — connecting the output of a device or circuit back to an input.

gate delay — the time taken for the output of a gate to change in response to a changing input.

latch — a device that either copies its input to its output, or holds the output constant, depening on the state of a gate
signal.

level-triggered — a device that performs its operation when a clock signal is in a particular state (high or low).

register — a device that can remember one or more bits of information.

rising — the edge of a clock signal corresponding to a change of state from 0 to 1.

stateful — a device that can remember its past inputs and/or outputs.

stateless — a device that has no memory and responds simply to the current set of inputs.

tick — the rising edge of a repeating clock signal, analogous to the ticking of a mechanical clock.
20


