Computer Mathematics

Week 10
Sequential logic circuits

Department of Mechanical and Electrical System Engineering

combinational digital circuits
signals and busses

logic gates
e and, or, not

e nand, nor, xor

gate-level logical operations
e bitwise: and, or, not

gate-level arithmetic operations

last week

Central Processing Unit

registers

Universal Serial Bus

Yy V

data

i bus
¢ v address
IR [DR] :--->|pc|->|AR|—Ibus I
Jhs 8

e

4

8
16
20
24
28

Random
Access
Memory

v v \/
Mouse Keyboard HDD

e addition, subtraction (unsigned, 2’s complement)

1-of-IN selection
e multiplexers

_| Input/Output

Controller

PCI Bus

<
«

1 1 1
vy v vY

GPU Audio SSD Net

KUAS this week

Central Processing Unit

data
iz |D¢R| oo MAkabus
sequential digital circuits pomea i S Sl Y v
Pe registers) : ; :
. Cu 12 I I I
stateful logic 2
o level-triggered devices S Random
t M
e latches |} e
Universal Serial Bus _| Input/Output |, PCiBus
\/ v v | cController [T¥ ¥ ¥ ¥
CIOCkS Mouse Keyboard HDD GPU Audio SSD Net

e edge-triggered devices

synchronous logic
e flip-flops
e registers and memory

CPU operation according to the clock cycle

KUAS combinational vs. sequential logic

combinational logic

A > >
e Outputs depend on current inputs Ci I /@) S

e NO Memory
COUT

e stateless

sequential logic

IN —
e outputs depend on current and past inputs

UPDATE —
e memory (history) of previous inputs
e Stateful

ole]s \

— OUT

KUAS

gate delay — adders
full adder: 3 gates to sum and carry out, 2 gates from carry in to carry out

tg tg tg tg tg tg
A I N ALE:I Ll | Ll | A I A[BTI Ll | Ll |
—«»—\)) ﬁ AOBOC,, AOBOC,,
B ,_/: M S B y/) S
C & C &
IN Cr{(AB) IN Cin{(AB)
>
C:OUT COUT
A-B C* (AB) +AB A<B Ch* (AB) +AB
daisy-chained...
A
AN 1 AN-Z Al AO
B
R LT
A B A B A B A B
COUT I COUT+ CIN il COUT CIN il °e° I COUT CIN nl COUT CIN il CIN
T T T T
Sha Sz S, So,

A+B
N is limited by gate delay = t,
o from A, B, C;y changing, CoyT is available 3 x t, later
e from C;y changing, CoyT is available 2 x t, later

e final CoyT is available (1 + 2N) x t, after inputs change

KUAS gate delay — multiplexer

2-to-1 multiplexer

t t t
f J P> J p>| J >

A N\

N —/ A —0
SEL DOUT — vux — OUT

B—1

B

B - SEL

gate delays from inputs to output
e from SEL changing, 3 x t, to OUT being stable
e from data input changing, 2 x ¢, to OUT changing

this delay can be exploited to produce memory!!

KUAS memory — latches

one way to make memory: use a multiplexer 0
A
e connect the output back to one of the inputs N lM“X ouT
— e.g., feedback from the output to input A 8L-TsEL
G

e when SEL is 1, input B is copied to output

e when SEL is 0, output is copied (via A) back to itself
— the output is held constant, independent of B

IN—D Qr— OuT

GATE |G

this is called a fransparent latch

e when the G (gate) input is 1, D (input) is copied to Q (output)
— the gate is ‘open’, the device is transparent

¢ when the G (gate) input is 0, Q (output) remains unchanged

— the device has ‘latched onto’ the value of B latch on to/onto

« from the moment the G signal changed from 1t0 0 3 9 1o o o0t

KUAS the problem with latches

let’s try to make a one-bit counter using a latch

e latch stores current counter value 1-bit counter (divide-by-2)

e a clock signal causes the counter to update

when the clock signal is low

, D Q OUTPUT
e the output is held constant by the latch

CLOCK —G

e the inverter computes the next desired output

when the clock signal is high
e the computed next output is copied to the output
e the inverter computes the next desired output (inverse of the current output)
e the next output goes through the ‘open’ latch and contradicts the current output

C|OCk oscilllation

D O 0 1 0

W

Q (outpu) 1 “1 0 1

unpredictable result

KUAS level- vs. edge-triggering

in a level-triggered system, when the clock is high
e the outputs can change once, and once only
e until the clock goes low again, closing all the latches

this is not very useful

much better would be an edge-triggered system

e clock ticks coincide with a specified clock edge
— e.g., a clock transition from 0 to 1 (the rising edge)

e a snapshot of the input is taken at that instant, and becomes the new output
e the inputs can change arbitrarily at any other time, because. ..
e the output always reflects the input at the last clock tick

|a--e-- cycle n - >la----- cycle n+1 -----»

clock tick T clock tick T clock tick T
f f<- ------------------------- >f etc...
input state captured at tick input can change between ticks

copied immediately to output output does not change between ticks

KUAS synchronous logic

1-bit counter (divide-by-2)

at the start of each clock cycle combinational logic
computes next state

e the state of the machine is captured in registers

e computation of next state begins D Q" cunent svate captured in
CLOCK > «— | little triangle means
synchronising clock "edge-triggered clock input”

‘all’ we need is an edge-triggered register

A:te computed in state computed in \

clock tick cycle n-1 is captured cycle n is captured etc...
in synchronous registers in synchronous registers

combinational logic begins combinational logic begins
to compute new state for to compute state for
cycle n cycle n+1

10

KUAS

let’s construct an edge-triggered register
e using a pair of level-triggered latches

when the clock is low
e the input gate is open
e the output gate is closed

repeat:

when the clock goes high (ticks)

e the input gate is closed
— the inputs are captured

e the output gate is opened
— captured inputs are sent to output

when the clock goes low

¢ the output device is closed
— captured outputs remain stable

e the input device is opened

CLOCK =1 -

open gate

CLOCK =0

synchronous logic — register model

CLOCK =0

=P

input gate
...B -
INPUT — ==
L
CLOCK =1 -reeeemmeemmmmmmeenees
B...
INPUT — —I
..C -
INPUT — ==
L
C...
INPUT — —I
L
>
closed gate

output gate
...B A
— -I — OUTPUT
tiCk -rereeeeeemnneeeeeaas
B - B
— =P — OUTPUT
L
..C B
7 -I — OUTPUT
tick -rereeeeeeenneeeeeeas
C - C
— =§ — OUTPUT
L

... changing state
X specific state

X captured state

11

KUAS synchronous logic — register implementation

B

INPUT D Q D
A
J—‘><P G G
CLOCK
clock
) {tick
(5A open

— OUTPUT

Q — ouTPUT
—] D

CLOCK —p
 tick tick

open open open

open

open

this is a flip-flop, a 1-bit synchronous register

open

e while one side is ‘flipping’, the other side is ‘flopping’

KUAS synchronous logic example — counters

1-bit counter (divide-by-2)

clock i tick Tick
Q (output) 1 0 1 0
D Q OUTPUT
D 0 ! 1 0 1
CLOCK —p S—

‘cascade’ N counters to make a 2%V -bit counter...

N-bit counter (divide-by-ZN)

< <

D Q-+ D Q¢ « N D Q¢ 4D Q OUTPUT

CLOCK — > — eee —D >

13

KUAS synchronous logic example — multi-bit registers

4-bit register

D, D, D, D,
| | | |
D D D D

> > > >
‘ Q (Q (Q Q
CLOCK ‘
Q3 QZ Ql QO

L1 * ’

D3 D2 D1 DO D

— —
Q3 Q2 Q1 QO Q

T T])2

the global clock signal is often omitted from the diagram
e to make the diagram easier to read

e any unconnected clock input is understood to be connected to the global clock

14

KU

one ‘accumulator’ register
12-bit address bus
16-bit instructions and data bus
e CONSTANT is a 12-bit constant
LS 12 bits of opcode
e OP is a 4-bit opcode

a simple CPU

ADDs PROGRAM

MEMORY
lDATA ouT
OP [CONSTANT
LD /INC 3 & 12
> +1 PC LOADH— O DECODER
JUMP

LS bit = constant/memory select

instruction decoder:
¢ conditional load of PC
e read or write to RAM
e ALU operation
e register load ®

@ output from ALU
e Twhen A=0

I COUNTER

b N7

'

A Y B
oP
ENABLE

v Y
> ADDR > > REGISTER [«—®R
READ / WRITE DATA IN
MAIN
> MEMORY
ADDR DATA OUT

15

KUAS a simple CPU

decoder design

e 4-bit opcode
— lowest bit selects ALU ‘B’ input: memory or constant

e eight operations

OP instructon ALUOP @ ® READ/WRITE JUMP

ADDR - - 0 1 0
LOAD B - 1 0
STORE - - 0 0 0

ADD A+ B - 1 1 0

SUB A—B - 1 1 0
JUMP B 1 0 1 1
JUMPZ B A=0 0 1 1

16

KU

insn binary
addr opcode

0: 10000000010
. 000 1 0BVVVVVVLVYY
: 001 0 0BV
: 011 0 0BVVVVVV10
: 101 0 0BV

B W0 N =

example program

op constant comment

ADDR 2 prepare to read memory address 2
LOAD read from memory to register

ADD 1 add 1 to register

STORE 2 store register into memory address 2
JUMP 0 repeat from instruction 0

equivalent high-level program (assuming count is at address 2):

while (true) {
count = count + 1;

17

KUAS next week

Central Processing Unit

data
¢ ¢ address "
IR [DR] :--->|pc|->|AR|—Ibus I
. e RSl vV
mathematics of control —] ——
e models of stateful computation -
s Il?anldonl]
PSR Access
1 Memory
finite state machines v ¥
Universal Serial Bus | Input/ Output | PciBus
e formal model ¥ ¢ ¥ | contoller [¥ ¥ ¥ ¥
Mouse Keyboard HDD GPU Audio SSD Net

e representations

FSM applications
e pattern matching
e pattern generation
e seqguencing

18

KUAS homework
study the simple CPU and example program
e simulate it on paper to see how it works
e One instruction at a time
reinforce your understanding

e write a simulator for the simple CPU in Python
— model the current state of the machine
— inpect the current instruction
— compute the next state of the machine
— update the current state
— repeat

e print the state at each step
e run a simple program
ask about anything you do not understand
e from any of the classes so far this semester (or the lecture notes)
e it will be too late for you to try to catch up later!

e | am always happy to explain things differently and practice examples with you
19

KU

S glossary

clock — a periodic signal that synchronises the operation of elements within a logic circuit.
complemented — inverted, or ‘flipped’.

edge-triggered — a device that performs its operation when a clock signal changes state.
edge — the vertical part of a square-shaped waveform.

feedback — connecting the output of a device or circuit back to an input.

gate delay — the time taken for the output of a gate to change in response to a changing input.

latch — a device that either copies its input to its output, or holds the output constant, depening on the state of a gate
signal.

level-triggered — a device that performs its operation when a clock signal is in a particular state (high or low).
register — a device that can remember one or more bits of information.

rising — the edge of a clock signal corresponding to a change of state from 0 to 1.

stateful — a device that can remember its past inputs and/or outputs.

stateless — a device that has no memory and responds simply to the current set of inputs.

tick — the rising edge of a repeating clock signal, analogous to the ticking of a mechanical clock.
20

