
Computer Mathematics

Week 11

Sequencing and control
Finite State Machines

Department of Mechanical and Electrical System Engineering

last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

sequential digital circuits

stateful logic

� level-triggered devices

� latches

clocks

� edge-triggered devices

synchronous logic

� flip-flops

� registers and memory

CPU operation according to the clock cycle

2

this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

mathematics of control

� models of stateful computation

finite state machines

� formal model

� representations

FSM applications

� pattern matching

� pattern generation

� sequencing

3

state machines

sequential logic: register (counter, etc.)

� has a stable state (the current output)

� transitions to the next state when the clock ticks

� next state is determined by current state and external inputs

sequential logic: the entire computer

� has a stable state (the contents of the registers and memory)

� transitions to the next state when the clock ticks

� next state is determined by current state and exernal inputs

one model describes very simple or very complex behaviour

� if we understand the model of simple behaviour, then

� we also understand complex behaviour (any computing device)

4

finite state machines

finite state machine (FSM) aka finite state automaton (FSA)

� simplest useful computing machine

theoretical value: abstract model of computation

� study the types and capabilities of different computing machines

� what resources are needed to compute particular types of problem?

practical value: physical process for computation

� building FSM in hardware makes CPUs, traffic lights, combination locks, . . .

� simulating FSM in software makes pattern matchers/generators, ‘AI’s, . . .
– many software architectural solutions are described by state machines
– e.g., communication protocols

5

finite state machines

FSM consists of a number of states

transition to next state is made in response to some stimulus

� a global clock ticks

� an external command (button, sensor) activates

� the next symbol (e.g., character from an input string) arrives

the next state depends only on

� the current state

� the input symbol (event type, sensor value, character value, etc.)

more sophisticated than it appears...

� inputting the same symbol doesn’t always produce the same behaviour

� the current state affects the ‘meaning’ of the symbol

6

FSM representation: graph

representing a FSM as a graph makes it easy to visualise

� each state becomes a vertex (circle)

� each transition is an edge (arrow) between two states

� each edge is labelled with its associated input symbol (or event)

1

2

3c

b

a

when in state 1
� input ‘a’ moves to state 2
� input ‘c’ moves to state 3

when in state 2
� input ‘b’ moves to state 1

the current state represents the entire history of the machine

a FSM can contain as many states as necessary

� can record arbitrarily long histories (sequences of inputs)

� just create a state for each possible position in the sequence

7

a practical application
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

CLOSING

TIME_WAIT

LAST_ACK

data transfer state

starting point

2MSL timeout

passive open

active open

simultaneous close

appl: passive open
send: <nothing> appl: active open

send: SYN

appl: send data

send: SYN
recv: SYN; send: SYN, A

CK

recv: R
ST

timeout
send: RST

recv: SYN
send: SYN, ACK
simultaneous open

rec
v: S

YN, A
CK

sen
d: A

CK

appl: close
send: FIN

recv: ACK
send: <nothing>

recv: FIN
send: ACK

recv: ACK
send: <nothing>

recv: FIN, ACK

send: ACK

recv: ACK

send: <nothing>

ap
pl: c

lose

sen
d: F

IN

recv: FIN
send: ACK

recv: FIN
send: ACK

appl: close
send: FIN

appl: close
or timeout

recv: ACK
send: <nothing>

active close

passive close

normal transitions for client
normal transitions for server

appl: state transitions taken when application issues operation
recv: state transitions taken when segment received
send: what is sent for this transition

TCP state transition diagram.

Reprinted from TCP/IP Illustrated, Volume 2: The Implementation
by Gary R. Wright and W. Richard Stevens,

Copyright © 1995 by Addison-Wesley Publishing Company, Inc.

TCP (Internet) communication protocol

� defined as FSM

� transitions depend on
– application actions
– network packets received

similar specifications for USB, etc.

FSMs can be compiled into code

8

application to patterns and languages
closely connected with grammars and ‘languages’ that follow rules

define two of the FSM’s states as special

� a starting state, and

� a finishing state

what sequence of symbols will move from the start to the finish state?

stopstart
m o v e

small arrow head
indicates the start

double circle
indicates the end

any sequence that moves from start to finish is ‘accepted’ by the machine

� the machine is a recogniser for certain strings

equivalently, the FSM is a generator of acceptable sequence(s)

� output a string of symbols while moving from start to finish

� any generated string will also be accepted by the same FSM

the complexity of the sequences is related to the complexity of the FSM

we now have a way to study symbol sequences and ask meaningful questions
9

patterns and languages

repeating patterns are made by cycles in the graph

let state 1 be the start, and state 3 be the finish

1

2

3
c

b

a

the machine will accept (generate) an infinite number of strings, starting with

� c
� abc
� ababc
� abababc
� . . .

� any number of ‘ab’ followed by a single ‘c’

10

examples

first page thereof

11

programming with loops

what does this program do?

import sys

while True:
while True:

c = sys.stdin.read(1)
if c != ’ ’: break # skip leading spaces

while c != ’’ and c > ’ ’:
sys.stdout.write(c) # print non-spaces
c = sys.stdin.read(1)

while c != ’’ and c != ’\n’: # skip all trailing characters
c = sys.stdin.read(1)

if c == ’’: break # stop at EOF
sys.stdout.write(c) ⇒ loops.py

when you know what it is supposed to do, is it actually correct?

could you modify (or reuse) it easily for a slightly different pattern?

12

programming with FSMs
what about this program?

import sys

BEFORE = 1; INSIDE = 2; AFTER = 3 # states

state = BEFORE

while True:
c = sys.stdin.read(1)
if ’’ == c: break # end of file
if (state == BEFORE):

if (c != ’ ’):
state = INSIDE
sys.stdout.write(c)

elif (state == INSIDE):
if c == ’ ’ :

state = AFTER
else:

if c == ’\n’: state = BEFORE
sys.stdout.write(c)

elif (state == AFTER):
if c == ’\n’:

state = BEFORE
sys.stdout.write(c) ⇒ fsm.py

13

FSM representation: table

representing a FSM as a table makes it easy to simulate

� each row corresponds to a particular state

� each column corresponds to a particular input

� each entry in the table specifies a next state

� to make a transition
– look up the entry at the current state (row) and input (column)
– make the state stored there be the current state

1

2

3c

b

a

when in this state ↓ a b c← if you see this input
1 2 3← then go to this state
2 1
3

14

previous example’s FSM

B I A

E

nl

?

sp

sp

nl

nl

sp

?

?

eof eof

eof

nl
sp
?

eof

=
=
=
=

new line
space
other chars
end of file

ignore spaces before the first word

print the first word until the next space

ignore all characters after the first word until a new line begins

an end-of-file character in any state stops the machine

nl sp other eof
BEFORE BEFORE BEFORE INSIDE END

INSIDE BEFORE AFTER INSIDE END

AFTER BEFORE AFTER AFTER END

END finish

15

programming with transition tables

import sys

NL = 0; SP = 1; OTHER = 2; EOF = 3 # character types

char_to_type = { ’’ : EOF, ’\n’ : NL, ’ ’ : SP }

BEFORE = 0; INSIDE = 1; AFTER = 2; END = 3 # FSM states

transitions = [
NL SP OTHER EOF

[[BEFORE, True], [BEFORE, False], [INSIDE, True], [END, False]], # BEFORE
[[BEFORE, True], [AFTER, False], [INSIDE, True], [END, False]], # INSIDE
[[BEFORE, True], [AFTER, False], [AFTER, False], [END, False]], # AFTER

]

state = BEFORE

while state != END:
c = sys.stdin.read(1)
ctype = char_to_type[c] if c in char_to_type else OTHER
nextState, printChar = transitions[state][ctype]
if printChar: sys.stdout.write(c)
state = nextState ⇒ table.py

16

previous example’s FSM with its actions

nl sp other eof
BEFORE BEFORE BEFORE INSIDE END

(and print nl) (and print char)

INSIDE BEFORE AFTER INSIDE END
(and print nl) (and print char)

AFTER BEFORE AFTER AFTER END
(and print nl)

END finish

the actions (print or ignore character) should be included in the FSM graph

the transitions are annotated with ‘:p’ (print input) or ‘:-’ (don’t print it)

B I A

E

nl : p

? : p

sp : -

sp : -

nl : p

nl : p

sp : -

? : -

? : p

eof : - eof : -

eof : -
input : action

nl
sp
?

eof

=
=
=
=

new line
space
other chars
end of file

p
-

=
=

print character
do nothing

17

formal definition of a state machine

M = {Σ, S, s0, F, δ}
� an input alphabet (set of symbols) Σ

� a finite set of machine states S

� an initial state s0 ∈ S
� a set of final (accepting) states F

� a transition function δ(s, σ) 7→ s′

M = 40
m o v e

l

1 2 3

o

M =

Σ = {m, o, v, l, e}
S = {0, 1, 2, 3, 4}
s0 = 0

F = {4}
δ = δ(0, m) 7→ 1 δ(2, l) 7→ 3 δ(3, o) 7→ 2

δ(1, o) 7→ 2 δ(2, v) 7→ 3 δ(3, e) 7→ 4

18

types of state machine

recogniser

� indicates whether the input is recognised

� transitions move from the start state to a single final state (|F | = 1)

� applications in parsing, pattern recognition, searching ⇒ wc.py

classifier

� final state indicates which class the input belong to (|F | > 1)

generator

� a recogniser whose transitions are labelled with single characters

� any path from start state to final state generates an acceptable sequence

transducer

� converts an input sequence into a sequence of outputs

� e.g., our word printing example

� applications in control (including the CPU), linguistics, etc.

19

next week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

Moore and Mealy machines

FSM applications

mathematical notation for FSMs

� regular expressions.

20

homework

run the example Python programs

� download from the course web site

� better still: type them in yourself

reinforce your understanding

� modify the table-driven FSM

� instead of printing (or not) the input, put action functions into the transition table

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you

21

glossary

cycles — (in a graph) a path consisting of one or more edges that lead from a vertex back to the same vertex.

generate — running a state machine through a path from start to finish while recording the symbols attached to each
transition, in order to produce a string of symbols that are acceptable by the machine.

graph — a mathematical representation of relationships between entities, in which vertexes represent objects or states
and edges between then represent paths or relationships between them.

recognise — showing that an input sequence of symbols or events is accepted by a state machine, by following a path
from start state to finish state, following the transitions that are indicated by successive symbols in the input sequence.

start state — the initial state of a state machine, before any transitions have been taken.

state — a stable condition of a state machine, representing the history of transitions taken since leaving the start state.

stimulus — (in a state machine) an input event, condition, value, etc., that causes a transition between states to be
taken.

symbol — a character from a string, the name of an event, or some other identifiable value associated with a transition
in a state machine.

transition — a path leading from one state to another, labelled with the input symbol that must be seen for the transitino
to be taken.

transition table — a table that maps the current state and the current input symbol to the state that will be the next
current state.

22

