
Computer Mathematics

Week 12

Sequencing and control
Regular Expressions

Department of Mechanical and Electrical System Engineering

last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

mathematics of control

� models of stateful computation

finite state machines

� formal model

� representations

FSM applications

� pattern matching

� pattern generation

� sequencing

2

this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

FSM applications

mathematical notation for FSMs

� regular expressions corresponding to FSMs

construction of FSMs

� from arbitrary regular expressions

3

FSM applications

hardware operations that take more than one cycle to complete

memory load/store

� real memory is slower than the CPU

⇒ use a counter to introduce idle cycles until data ready

iterative ALU operations

� multiplication⇒ (shift, multiply, add partial product) ×N bits

� division⇒ (shift, subtract, keep/reject partial remainder) ×N bits

background activities

� serial communications⇒ counter and shift register running autonomously

� transfer of data to/from device without CPU involvement
⇒ device controller performs RAM read/write cycles

4

FSM example — hardware multiplication

multiplicand

product multiplier/

+

31 0

31 063 32

32

32

33

320

33

controller
(FSM)

64

64

clock

start

done

A x B

A

B

LSBLOAD

LOAD

ADD SHIFT

D

Q

D1

Q1 D0

Q1,Q0

start=0

LSb=1

LSb=0

count=32

count<32

IDLE

TEST

SHIFT=1
count=count+1

SHIFT

INIT

LOAD=1
count=0

ADD

ADD=1

start=1

done=1

A, B 32-bit inputs
A×B 64-bit product
clock global clock
start begin multiply
done multiply finished

LOAD load multiplicand,
load multiplier,
clear product to 0

ADD load product
SHIFT shift product, multiplier right
LSb least significant bit of multiplier

5

a mathematical notation for sequences

single transitions correspond to a single symbol

10
b ⇒ b

a sequence of transitions corresponds to a linear sequence of symbols

30
b a t

1 2 ⇒ bat

alternative paths through the FSM produce alternative sequences of symbols

� written with a ‘|’ character between the alternatives

30
b a t

i

1 2 ⇒
bat|bit
b(a|i)t

6

a mathematical notation for sequences

cycles in the path produce repeated sub-sequences of symbols

� a ‘∗’ after an item indicates that it repeats zero or more times

30
b a t

1 2

e

⇒
b(e*)at
be*at

30
b a t

1 2

r

⇒ ba(ra)*t

7

regular expressions

REs are sequences of symbols combined using concatenation, |, and *

parentheses can be used to group items

� limiting, or extending, the ‘reach’ of an operator within an expression

RE operator precedence:

lowest | alternation separates entire sequences
concatenation creates sequences of single items

highest * operates on the single item immediately before it

(...) creates a single item from the RE ‘ ... ’

f(oo)*|ba*(rs|z*es) ⇒

f foo foooo foooooo foooo ... oooo

brs bars baars baaars baa ... aars

bzes bazes baazes baaazes baa ... aazes
bzzes bazzes baazzes baaazzes baa ... aazzes
bzzzes bazzzes baazzzes baaazzzes baa ... aazzzes
bzz ... zzes bazz ... zzes baazz ... zzes baaazz ... zzes baa ... aazz ... zzes

8

empty sequences

the FSM with no transitions generates (or recognises) the empty string

0 ⇒ ε

� written as ε, the Greek letter epsilon (ε for ‘εmpty’), or literally as an empty string

� ε is the string containing no symbols at all

FSM transitions corresponding to the empty string are called ε-transitions

� labelled with ε, or with no label at all

0 1 ⇒ ε

ε-transitions

� generate no symbols at all

� can be followed immediately ‘for free’ when recognising a sequence
– no input is necessary

9

empty sequences

ε-transitions (empty strings) are surprisingly useful

forward-skipping ε-transitions produce optional ‘zero or one’ sequences of symbols

� ‘?’ after an item indicates that it is optional

30
i o n

1 2 ⇒
in|ion
i(o|ε)n
io?n

backward-skipping ε-transitions produce ‘one or more’ repetitions of a sequence

� denoted by a ‘+’ character after the item that repeats

30
b o t

1 2 ⇒
bot|boot|
boo*t
bo+t

the ? and + notations are not fundamental, and are used for convenience only

� e? can always be rewritten as e|ε
� e+ can always be rewritten as ee∗

10

creating FSMs from REs

REs are a very compact way to represent patterns of symbols

� e.g., patterns of characters within text

FSMs are a very efficient mechanism for recognising patterns of symbols

� read symbol, look up in transition table, move to next state, repeat

let’s turn an arbitrary RE into its equivalent FSM

� so that we can search for arbitrary patterns of symbols very efficiently

11

creating FSMs from REs

let “ e ” represent the FSM corresponding to the regular expression e, then. . .

empty strings are just the empty FSM e = ε e =

single symbols are a single labelled transition e = x e =
x

repetition of an expression

e = e1∗ e = e1� add two new states and

� two ε-transitions to the FSM

concatenation of expressions
e = e1 e2 e = e1 e2

� place their FSMs in series

alternation between expressions
e = e1 | e2 e =

e1

e2
� place their FSMs in parallel

12

creating FSMs from REs

the two ‘convenience’ operators, ? and +, are similarly easy

optional ‘zero or one’ sequences e = e1? e =
e1

� ε short-circuit from their start to final state

repeating ‘one or more’ sequences e = e1+ e =
e1

� ε return from the final state back to the start

13

example

a(b|c)*b?c

a

b

c

b c
0 1 2

3 4

65

7 8 9 10 11 12

(states and transitions in grey are artefacts of the construction algorithm, and are redundant)

this FSM raises several questions

� how do we choose which of the ε-transitions to follow from state 2?

� in state 2, how do we know if a b should lead us to state 4 or to state 10?

� how do we get rid of all those redundant states and transitions?

how do we ‘execute’ this FSM at all? ⇒ next week!

14

practical regular expressions

lots of additional features (too many)

wildcard character

� ‘.’ matches any character
– e.g., ‘x...y’ matches x followed four characters later by y

anchoring

� ‘ˆ’ matches the beginning of a line

� ‘$’ matches the end of a line
– e.g., ‘ˆhello$’ matches lines containing only hello

character classes

� ‘[abc]’ matches a, b, or c

� ‘[ˆabc]’ matches anything except a, b, or c

� ‘[a-z]’ matches any lower-case letter, ‘[0-9]’ matches any decimal digit

� ‘[a-zA-Z_][a-zA-Z_0-9]’ matches an identifier

15

practical regular expressions

on the command line (Terminal.app):

� the program egrep finds lines in files that match a regular expression

� type ‘man egrep’ to find out how it works

� type ‘man re_format’ to read about the RE extensions it supports

in Python:

import re
rex = re.compile("[0-9]")
print rex.match("nope")
print rex.match("42")

in other languages

� JavaScript: myString.search(/regular-expression/)

� PERL: /regular-expression/ =∼ myString

� awk: /regular-expression/ { do-something }

� and many more...

16

next week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

non-deterministic machines

� how to simulate them

eliminating non-determinism

� make an equivalent deterministic machine

� using a clue from the simulation
– and some real mathematics

deterministic machines

� advantages and disadvantages

� relative performance

17

homework

reinforce your understanding

� practice using regular expressions in Python

complete the multiplier example on page 5

� assume you have a 6-bit binary counter with reset

� draw the truth table for each of the 5 states
– next state based on current state, inputs, counter, etc.
– outputs based on current state, inputs, etc.

� write a Python program to simulate the multiplier

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you

18

glossary

alternative — a choice between two or more possibilities (paths through a graph, sequences
of symbols, etc.). In a FSM, alternatives appear as two or more distinct parallel paths between
two states.

cycle — a path through a graph that arrives at a given state more than once.

empty string — a string that contains no symbols. Generated (and recognised) by an epsilon
transition in a FSM.

epsilon — the Greek letter ε, representing something very small or non-existent.

epsilon transition — a transition that generates (and recognises) the empty string. The
transition can be followed without producing or consuming any symbols at all.

fundamental — something that is essential.

sequence — a linear series of symbols, events, etc. In a FSM, a sequence appears as a
series of states connected linearly.

19

