
Computer Mathematics

Week 13

Sequencing and control
Deterministic and non-deterministic machines

Department of Mechanical and Electrical System Engineering

last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

mathematical notation for FSMs

� regular expressions

construction of FSMs

� from arbitrary regular expressions

2

this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

non-deterministic machines

� how to simulate them

eliminating non-determinism

� make an equivalent deterministic machine

� using a clue from the simulation
– and some real mathematics

deterministic machines

� advantages and disadvantages

� relative performance

3

non-deterministic machines
automatic construction

ε = x =
x

e1 e2 = e1 e2 e1 | e2 =

e1

e2

e1∗ = e1

e1? =
e1 e1+ =

e1

leads to machines with many ε-transitions

� when two (or more) transitions can be followed, we have to make a choice

� non-determinism means “not knowing what to do next”

� non-deterministic finite (state) automaton (NFA)
4

non-deterministic machines

(a|b)*ab?c

a

b

a

b c
1

2

3

4

5 6

7 8 9

one way to ‘run’ this machine: back-tracking

� make arbitrary decisions when two ε-transitions can be followed

� use the input string to check when a labelled transition can be made

� when you get stuck, back up to the last decision and try a different one

each symbol scanned many times, many false paths explored: very inefficient

5

non-deterministic machines

(a|b)*ab?c

a

b

a

b c
1

2

3

4

5 6

7 8 9

a much better way to ‘run’ this machine: follow all paths in parallel

� keep a set of possible states for each input sentence position

� follow all possible ε-transitions (transitively) at the current position

� use the current input symbol to decide which labelled transitions can be followed

� advance and repeat, trying to reach the ‘accepting’ state at the end of the input

each symbol scanned once, only viable paths explored: much more efficient

6

non-deterministic machines

(a|b)*ab?c

a

b

a

b c
1

2

3

4

5 6

7 8 9

let’s try to match “abac”
(beginning with the start state) follow all possible ε-transitions (transitively) at the current input position

� leads to a set of states with labelled transitions (which cannot be crossed... yet)

use the current input symbol to decide which of these labelled transitions can be followed

� generates a state set at the next input position

� make the next input position current one, and repeat from the first step

repeat until you reach the end of the input

� if any ‘accepting’ state is in the final state set, the machine recognised the input
7

efficient recognition with NFAs

Let’s try to match: "abac"

begin by adding just the start state to the first set (input position 0)

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1

8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5

8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5

8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

efficient recognition with NFAs

(a|b)*ab?c

a

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1

a

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1

a

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1

a

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8

a

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5

a

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5

a

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5

a 9

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5
3
4

a 9

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5
3
4

a 9

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5
3
4

a 9

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5
3
4

a 9

efficient recognition with NFAs

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5
3
4

a 9

efficient recognition with NFAs

Success!

(a|b)*ab?c

b

a

b c
1

2

a b a c
0 1 2 3 4

3

4

5 6

7 8

input string and
set of permitted states

9

1
2
5
3
4

6
1
7
8
2
5
3
4

8
1
2
5
3
4

6
1
7
8
2
5
3
4

a 9

9

efficiency of NFA recognisers

recursive back-tracking (in red)

� exponential behaviour when given difficult NFAs and input

parallel (in blue)

� close to linear behaviour even for difficult NFAs and input

� slope is quite high, though (cost of state set management)

10

efficiency of NFA recognisers

can do even better: convert NFA to deterministic finite (state) automaton (DFA)

� linear behaviour (proportional to input size)
+ fixed overhead (proportional to expression size)

� deterministic means “always know exactly what to do next”

11

NFA properties

do not require input symbols for state transitions (ε-transition)

can transition to any number of new states from a given start state and input symbol

(a|b)*c

b

a

S1

S2

c

S3

S5S4 S6S0

S a b c ε

0 - - - {1 5}
1 - - - {2 3}
2 {4} - - -
3 - {4} - -
4 - - - {1}
5 - - {6} -
6 accept

can be slow

� recursive back-tracking, or

� state set management

12

DFA properties

contain only labelled transitions (there are no ε-transitions)

� a matching input symbol is required for all transitions

all transitions are unambiguous:

� current state × input symbol→ next state (effectively instantaneous!)

transition table entries are single states (not sets)

(a|b)*c

b

a

S0
c

S2

S a b c
0 0 0 1
1 accept

DFA is much more efficient than NFA; linear behaviour:

� for input size N , at most N transitions to accept/reject input

13

NFA to DFA

our next goal is to find an algorithm that will convert any NFA, e.g:

b

a

S1

S2

c

S3

S5S4 S6S0

into an equivalent DFA, e.g:

b

a

S0
c

S2

(for this we need to know about ε-closures)

14

ε-closures

the ε-closure of state S in a FSA M , ε-closure(S) =

� the set containing S and

� all states reachable from S by following ε-transitions

b

a

S1

S2

c

S3

S5S4 S6S0

ε-closure(S0) = {S0, S1, S2, S3, S5}

simplify by deleting states that have no labelled outgoing transitions

ε-closure(S0) = {S2, S3, S5}

15

NFA to DFA: the goal

remember our goal: transform the NFA

b

a

S1

S2

c

S3

S5S4 S6S0 into a DFA

b

a

S0
c

S2

two steps; beginning from the NFA start state N0 (i.e., with i = 0):

� create a new DFA state Di = ε-closure(Ni)

� for each symbol s in the alphabet
– create a labelled transition Di

s−→ Dj

– where Dj =
⋃
ε-closure(Nj) for all Ni

s−→ Nj , Ni ∈ Dj

repeat with the target states of Di → until no new Dj are possible

any Di which contains an accepting N state is an accepting D state

16

NFA to DFA

b

a

N1

N2

c

N3

N5N4 N6N0

new D0 = {N2, N3, N5}

Step 1: construct D0 = ε-closure(N0)

D0 = {N2, N3, N5}

Step 2: take any new state (e.g., D0) and find its transitions

17

NFA to DFA

b

a

N1

N2

c

N3

N5N4 N6N0

D0 = {N2, N3, N5}

Step 2a: find the ε-closure of target states for D0
a−→

� N2
a−→ N4

� ε-closure(N4) = {N2, N3, N5} = D0

⇒ D0 × a = D0

Transition Table:
a b c

D0 D0

18

NFA to DFA

b

a

N1

N2

c

N3

N5N4 N6N0

D0 = {N2, N3, N5}

Step 2b: find the ε-closure of target states for D0
b−→

� N3
b−→ N4

� ε-closure(N4) = {N2, N3, N5} = D0

⇒ D0 × b = D0

Transition Table:
a b c

D0 D0 D0

19

NFA to DFA

b

a

N1

N2

c

N3

N5N4 N6N0

D0 = {N2, N3, N5}
new D1 = {N6}

Step 2c: find the ε-closure of target states for D0
c−→

� N5
c−→ N6

� ε-closure(N6) = {N6} = D1 (N6 accepts⇒D1 accepts too)

⇒ D0 × c = D1

Transition Table:
a b c

D0 D0 D0 D1

D1 accept

20

NFA to DFA

b

a

N1

N2

c

N3

N5N4 N6N0

D0 = {N2, N3, N5}
D1 = {N6}

Step 3: take any new state (e.g., D1) and find its transitions

Step 3a: No Ni ∈ D1 has a labelled transition, so nothing to do

Step 4: there are no more new states Di, so we are finished

Transition Table:
a b c

D0 D0 D0 D1

D1 accept

21

NFA to DFA

the DFA can be drawn from the transition table

states(D) = D0 = {N2, N3, N5}
D1 = {N6}

transitions(D) =
a b c

D0 D0 D0 D1

D1 accept

DFA:

b

a

S0
c

S2

this DFA recognises sentences of (a|b)*c in linear time

� time proportional to the length of the input string

22

NFA to DFA: the ‘subset construction’

let

� ai be the input sentence alphabet characters

� Ni be the states of an NFA

� Di be the states of the corresponding DFA
– each Di is a set of Ni states

� ε-closure(Ni) be
the set of all states reachable (directly or indirectly) from Ni by following
ε-transitions

� ε-closure(Di) be the union of the ε-closures of all Ni ∈ Di

ε-closure(Di) =
⋃

Nj∈Di

ε-closure(Nj)

we represent a DFA D as

� states(D), the set of states Di in D

� transitions(D), a set of transitions Di × an → Dj in D

23

NFA to DFA: the ‘subset construction’

let U be an empty set, and N0 the start state of the NFA

to construct the corresponding DFA from a NFA:

let D0 (the start state of the DFA) be ε-closure(N0)

add D0 to U (the ‘unexplored’ DFA states)

while U is not empty :
remove an element Di from U

for every symbol an of the input alphabet :

let Dm = the set of states {Nj : Ni ∈ Di ∧Ni
an−−→ Nj}

let Dn = ε-closure(Dm)

add Di × an → Dn to transitions(D)

if any Ni in Dn is an accepting state, then Dn is accepting
if Dn is not already in states(D) :

add Dn to states(D)

add Dn to U

states(D) and transitions(D) now contain the DFA
24

example NFA to DFA

a*b*c

N0 N1
c

N2
a b

N4 N5N3 N6 N7

D0 = {N0 N1 N3 N4 N6}
D0 × a→ {N0 N1 N3 N4 N6} = D0 (from
N1)
D0 × b→ {N3 N5 N6} = D1 (from N4)
D0 × c→ {N7} = D2 (from N6)
D1 × b→ {N3 N5 N6} = D1 (from N4)
D1 × c→ {N7} = D2 (from N6)

D a b c

0 0 1 2
1 - 1 2
2 accept

a

b
D0 D1

c
D2

b

c

25

next week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

the mathematics of languages

� grammars

regular grammars

� relationship to FSMs

� lack of memory

� limitations

FSMs with memory

� push-down automata

26

homework

reinforce your understanding

� write a NFA simulator in Python
– invent a representation for NFA states
– and another for state sets
– code the algorithm for generating new states

� write a NFA to DFA converter in Python
– write a function that compares two state sets
– and another that generates ε-closures
– code the subset construction algorithm

� write a DFA engine in Python (easy!)
– current state + current input = new current state
– repeat until you reach the final state

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you
27

glossary

ambiguous — not having an obvious meaning or solution. In a FSM, a state that has more
than one outgoing transition that can be taken, either because of ε-transitions or because the
same label appears on more than one transition.

back-tracking — a method of running a NFA in which easy possible path is attempted until the
correct one is found. When an input symbol does not match any transitions from the current
state, the machine backs up to an earlier decision (now known to have been wrong) and tries
again making a different decision.

deterministic — a system that is free of ambiguity, in which every decision can be made (or
predicted) with absolute certainty.

deterministic finite automaton (DFA) — a finite automaton in which there is no ambiguity.
There are no ε-transitions, and never more than one transition with a given label out of a state.

ε-closure — the transitive closure of ε-transitions from a given state in a FSM.

exponential — (algorithm) behaviour in which a fixed addition to the problem complexity leads
to a fixed multiplication in the amount of time required to solve the problem. For an exponential
problem of size N , the time t taken to solve the problem is t = kN where k is a constant.

28

linear behaviour — (algorithm) behaviour in which a fixed addition to the problem complexity
leads to a fixed addition in the the amount of time required to solve the problem. For a linear
problem of size N , the time t taken to solve the problem is t = kN where k is a constant.

non-deterministic — a system that contains ambiguity, in which decisions cannot be made (or
predicted) in advance and may eventually turn out to have been incorrect.

non-deterministic finite automaton (NFA) — a finite automaton in which there is ambiguity.
There might be multiple ε-transitions out of states, and a given state might contain multiple
outgoing transitions with the same label.

state set — a set of FSM states, often containing all of the states that can be reached at a
given position in the sequence of input symbols.

transitive closure — the set of related items obtained when a transitive operation is applied
repeatedly from some starting element until no further elements can be added. For example,
the transitive closure of the < relation starting from the element 42 in the counting numbers is
the set of all counting numbers greater than 42. The transitive closure of ε-transitions in a FSM,
starting from some given state S, is the set of all states that are directly or indirectly reachable
from S by following one or more ε-transitions.

unambiguous — having a single, obvious meaning or solution. In an unambiguous FSM, the
single correct transition to follow from any state can be determined trivially by looking at the
input symbol and following the single corresponding transition (if any) to the next state.

29

