Computer Mathematics

Week 15
Context-free languages and parsing

BrEEHFAE
Sy RENJTIM
KYOTO UNIVERSITY of ADVANCED SCIENCE

Department of Mechanical and Electrical System Engineering

UAS last week

Central Processing Unit

data

Ii& y addrgss "
origins of computational grammars p—

c :
grammars describe languages g

s Random

PiR Access

: M
FSMs describe languages |} e
Universal SerialBus | Input / Qutput | . PCiBus
v v v | Controller | vy i vy VY

grammars Corresponding to FSMS Mouse Keyboard HDD GPU Audio SSD Net

the hierarchy of grammar types
regular grammars

context-free grammars

e and their importance to computing

KUAS this week

Central Processing Unit

y
IR
context-free grammars cu
e how they behave oreson|..
PSR
¢ how to describe languages with them f
L hOW to parse Sequences With them Universal Serial Bus _| Input/Output |, PCiBus
7 v v | Controller 'y v v v
Mouse Keyboard HDD GPU Audio SSD Net

the remaining grammar types
e type 1 grammars
e type 0 grammars
and the machines that correspond to them

S regular and context-free grammars

regular grammars (and expressions) good for patterns

e identifiers, integers, floating-point numbers, etc.

e the sequence of operations at a traffic light, in the CPU/ALU, etc.
right-hand sides must have no more than one non-terminal and one terminal

<non-terminal> — ¢
terminal

<non-terminal>
terminal <non-terminal>

corresponding to a finite-state machine

to describe anything recursive (things nested inside themselves)
e parenthesised expressions, HTML tags, etc.
we need a context-free grammar (CFG)

<non-terminal> — « (where « is any sequence of terminal or non-terminal symbols)

corresponding to a finite-state machine with a stack

KU

S context

in a CFG, the left-hand side of a rule is a single non-terminal symbol

e.g., the rules

<P> — a <P> a
<P> — b

are both context-free (and generate palindromes “a”ba"”)

the rule
a <P> — a <P> a

IS not context-free
e because <P > can only be replaced when it is preceded by an a
e <P> Is sensitive to the context in which it appears within the sentence

KUAS other grammar types

context-sensitive grammars contain rules of the form
a <non-terminal> — o ~v

(where o and g can be empty, but v must contain at least one symbol)
e when replacing a non-terminal, the sentential form cannot shrink

the machine corresponding to this kind of grammar is
e a finite-state machine

e plus a memory, that can be accessed in any order
— not limited to stack (LIFO) behaviour, but
— can be limited to the size of the input sentence

this kind of machine is called a linear-bounded automaton (LBA)
e because its memory is linear, and bounded by the size of the input

KU

S other grammar types

unrestricted (or phrase-structured) grammars can contain rules of the form
a — [
(where a must contain at least one symbol, and 5 can be anything)

e when replacing a sentential form, the sentence can shrink
=- non-terminals can vanish, or appear from nowhere, without warning

the machine corresponding to this kind of grammar is
¢ a finite-state machine
e plus an infinitely-large, linear memory

this kind of machine is called a Turing machine
e because its inventor was the mathematician Alan Turing
e itis at least as powerful as the most powerful computer we know how to build

KUAS grammar hierarchy

type O
unrestricted (phrase-structured)
unbounded linear automaton (Turing machine)

type 1
context-sensitive
linear-bounded automaton

type 2
context-free
push-down automaton

type 3
regular
finite state machine

note that each type of grammar includes all those with higher numbers
e €.g., you can implement a finite state machine (a regular language)

e using a program that generates parsers for context-free languages
— provided you only use rules that are regular

but let’s return to context-free languages, since most of computing is made from
them...

KU

S syntax and semantics are (often) separated

syntax [mass noun]

» the arrangement of words and phrases to create well-formed sentences in a language

semantics [plural noun]

» the meaning of a word, phrase or text

easy to create sentences that appear meaningless

<sentence> — <noun-phrase> <verb-phrase>
<noun-phrase> — <adjective> <noun>
<verb-phrase> — <verb> <adverb>

< adjective > <noun> <verb> <adverb>

considerate tea drinks rapidly

KUAS syntax conveys meaning about roles and relationships

<adjective > <noun> <verb> <aadverb>

considerate tea drinks rapidly

even here, we can identify that

something tea
that has a property considerate
does something drinks
in a particular way rapidly

what does this have to do with computer languages?
e syntax can tell us about the roles of symbols and their relationships

to understand how, let’s look at the syntactic structure of expressions

10

KUAS grammars describe patterns of symbols
recall our BNF example of addition from last week

<sum> — <identifier> + <identifier>
<identifier> — <letter> | <letter> <identifier>
<letter> — a |b|c | ... |x|y|z

repetition was via recursion

sentential forms replacements

<identifier> (<identifier> — <letter> <identifier>)
— <letter> <identifier> (<letter> — “v”
— v <lidentifier> (<identifier> — <letter> <identifier>)
— v <letter> <identifier> (<letter> — “a”
— v a <lidentifier> (<identifier> — <letter>)
— v a <letter> (<letter> — “r”
— VvV ar

the derivation of “var” is the sequence of replacements that we made
e from the start symbol <identifier> to the final sentence “var”

e numbering distinct ‘appearances’ of a non-terminal will help us see how it evolves
11

KU

derivations form a ‘tree’ structure

sentential forms

<identifier>

VvV

\Y/

A

VvV
VvV
VvV

<letter> <identifier>

<identifier>
<letter> <identifier>
a <lidentifier>

a <letter>

ar

within the derivation tree

e the root is the start symbol
e the leaves are the terminal symbols Y <letter>, <identifier>,

e the branches are the sequences of

replacements

(<identifier>; — <letter>; <identifier>s)
(<letter>; — “v”

(<identifier>, — <letter>, <identifier>z)
(<letter>, — “a”

(<identifier>3 — <letter>3)

(<letter>3 — “r”

<identifier>_

<Ietter>l <identifier>2

/ N\

| |
a <letter>,

non-terminal replacements that were made |

to reach each terminal symbol from the start symbol

r

12

KUAS

derivations form a ‘tree’ structure

<expression> — <expression> + <expression>
| <expression> x <expression>
| <number>

<number> — @ | 1| ... | 8|9

let’s try to find a derivation for:

(remember:

1 + 2 % 3

" does not imply an order, and any alternative that works is acceptable)

13

KUAS syntactic structure can be ambiguous

the sentence can be generated in two ways
e the choice makes no difference to the language defined by the grammar

1 + 2 x 3
<expression> * <expression> <expression> + <expression>
<expression> + <expression> <number>_ <number> <expression> * <expression>
<number> <number> <number> <number>
| | | |
1 2 3 1 2 3

however, the meaning of the sentence is its value (as an arithmetic expression)

before applying an operator, all its operand values must be calculated

= values are calculated bottom-up
— from the leaves of the tree up towards the root

the two derivations apply operators in a different order

¢ the choice of derivation makes a big difference to the meaning of the sentence
14

KUAS ambiguity creates uncertainty of meaning

snp
[0,time,N] |

{1.fly.v]

N

vpp

*~
vpPP mod

[0.time,V] | ~————>
np

\ N

{1,fly,N]

e

-

[2.like,P)

/

npp

snp

[2.like,V]

{
[4,arrow,N)

P
— wmp \det

I {3.an.det]]

Sentence: Time flies like an arrow.

15

KUAS

ambiguity creates uncertainty of meaning

[1.see.v]

Sentence: | saw a man on the hill with a telescope.

~———
o app
- npp ~P
i [4,0n.p] ~ PpR
A
[6,hill.n]
[S.the,art] |

- app —P

{7 with,p]

| oee

(9.telescope.n]

e

[8.,2,art]

16

KU

S grammar can impose correct syntactic structure
<sum> — <sum> + <product>
| <product>
<product> — <product> x <number>
| <number>
<number> — <digit> | <digit> <number>
<digit> -0 |1] ... |8]09
<sum> + <product>
ambiguity has been removed <number> <product> * <number>
: : C | |
e any given expression has only one derivation <nun|1ber> <nun|1ber>
e the language did not change 1 2 ¢ 3

— the exact same set of sentences can be derived
higher-precedence operators are placed ‘lower’ in the grammar
recursion provides repetition of same-precedence operators

does it matter whether we use left- or right-recursion for the repetition?

17

KU

S correct syntactic structure imposes correct semantics

<sum> - <product>
<product>

<expression> — <assignment> | <sum>
<assignment> — <id> = <assignment>
<sum> — <sum> + <product>

<product> — <product> x <number>
<product> / <number>
<product> % <number>
<number >

using left recursion for “+” ... “%” makes them all left-associative
e “7-3-1"means 7-3 = 4,then4-1 = 3 (not3-1 = 2,then7-2 = 5)

using right recursion for assignment makes it right-associative
e “a=b=42"means b=42,thena=>b (not a=b, then b=42)

18

KU

S abstract syntax trees
parse trees contain too much information

we don't really care that
e an <expression> made a <sum>, and
e the <sum> made a <sum> + <product>, and
e the <sum> made a <number>, and the <number > made a 3, and
e the <product> made a <number >, and the <number> made a 4

all we really wanted to know was
e <number=3> + <number=4>

this kind of tree is called an abstract syntax tree (AST)
e it encodes only what is required to understand the meaning of the sentence
given an AST we could (e.g.) evaluate it, or compile it into machine code

binary +

“142%3” = TN

numl1l binary *

TN

num 2 num 3
19

KU

S parsing

generating sentences from a grammar is easy
e replace non-terminals, choosing arbitrary right-hand sides
e eventually a sentence appears, along with its derivation (the set of choices)

parsing goes in the opposite direction
e given a grammar, and a sentence...
e find a derivation that produces the sentence

this is a far harder problem

there are many (many) algorithms for parsing
e and a different classification system for grammars
e based on which parsing algorithms work with them
enough for an entire course (and beyond)

let’'s look at one way to write parsers by hand
e which works well for many kinds of computer languages and applications

20

KUAS recursive-descent parsing

the basic idea:
e write functions that follow the structure of the grammar

each function has
e input: a string and a position within the string

e output: true/false (was the input recognised)
— advancing the input position if it was

text = "your input sentence goes here"
position = 0

def parseSomething():
if cannot recognise Something at text|[position]: return False

position += size of Something that was recognised
return True

KUAS recursive-descent parsing

identifiers revisited

<identifier> — <letter> | <letter> <identifier>
<letter> — a |b |c| ... | x|y |z

to parse a letter
e recognise a valid alternative

def parselLetter(): # a | b | ... | yv | z
global text, position
if text[position] < "a" or text[position] > "z": return False

position += 1
return True

to parse an identifier, we can ‘left factor’ the rule to simplify it
e parse a letter, then an optional identifier

def parseldentifier(): # letter | letter identifier = letter identifierx
global text, position
if not parselLetter(): return False
parseldentifier()
return True

22

S returning values from parser rules

text = "hello+there$" # $ is explicit end-of-text marker

position = 0
lval = None

def parselLetter(): # a | b | ... | vy | z
global text, position, lval

if text[position] < "a" or text[position] > "z":

lval = text[position]
position += 1
return True

def parseldentifier(): # letter | letter identifier
global text, position, 1lval
start = position
if not parselLetter(): return False
parseldentifier()
lval = text[start:position]
return True

print(parseldentifier())
print(position)
print(lval)

return False

letter identifierx

23

KUAS constructing an AST during parsing

text = "hello+there$" # $ is explicit end-of-text marker

def parseldentifier(): # letter | letter identifier
global text, position, lval
start = position
if not parselLetter(): return False
parseldentifier()
lval = ["identifier", text[start:position]]
return True
def parseSum(): # sum + identifier | identifier = identifier (+ identifier)x
global text, position, 1lval
if not parseldentifier(): return False
saved = position
result = lval
while text[position] == "+
position += 1
if not parseldentifier():
print("identifier expected at position
exit()
result = ["add", result, lval]
saved = position
lval = result
return True

+ str(position))

KUAS homework

reinforce your understanding

e see if you can write a parser for addition and multiplication
— in Python
— the input should be a string, e.g., “1+2*3”

e produce an AST for the input
— for a numbers N, make a list: [>number’, N]
— for additions, make a list: [>add’, left-child, right-child]
— for multiplications, make a list: [*mul’, left-child, right-child]

e verify you produce the correct ASTs for different expressions
— including things like “1+2+3%4” and “1+2x3+4”

e write a function that can evaluate your AST and print the result

ask about anything you do not understand
e from any of the classes so far this semester (or the lecture notes)
e it will be too late for you to try to catch up later!
e | am always happy to explain things differently and practice examples with you

25

KU

S glossary

abstract syntax tree — one possible result of parsing, similar to a parse tree but
containing only the information that is necessary to extract the meaning of the input.

bottom-up — (tree algorithms) an algorithm that begins at the leaves of the tree, and
proceeds up the tree towards the root. At each step, processing of a node in the tree
is performed only when all of its children have been completely processed.
branches — the paths through a tree that connect the root to the leaves.

compile — convert a source code program into executable machine code.

context-sensitive grammars — grammars in which rules specify the context in
which a non-terminal must occur in order to be replaced by the right-hand side.

context — the symbols in a sentence (or sentential form) preceding or following a
non-terminal symbol.

derivation — the sequence of replacement steps performed to convert the start
symbol of a grammar into a valid sentence.

evaluate — calculate a value for a structure, such as a numerical value for a tree
representing an arithmetic expression.

26

KU

leaves — the nodes at the ends of the branches in a tree, which have no children.

linear-bounded automaton — a finite state automaton with randomly accessible
memory bounded by some upper limit, such as the size of the input data.

parse tree — a tree showing the parent-child relationships produced by the
sequence of replacements made in a derivation of a sentence.

phrase-structured — (grammar) another name for an unrestricted grammar.
root — (of a tree) the top-most node in a tree, which has no parent.

top-down — (iree algorithms) an algorithm that begins at the root of the tree and
proceeds down the tree towards the root.

tree — a structure in which nodes have parent-child relationships, each node having
exactly one parent (except for the root, which has no parent).

Turing machine — an automaton that has an infinitely large memory.

unrestricted — a grammar in which anything goes, the only restriction being that the
left-hand side of a rule cannot be empty.
27

