
Computer Mathematics

Week 15
Context-free languages and parsing

Department of Mechanical and Electrical System Engineering

last week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

Random
Access
Memory

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

origins of computational grammars

grammars describe languages

FSMs describe languages

grammars corresponding to FSMs

the hierarchy of grammar types

regular grammars

context-free grammars

� and their importance to computing

2

this week

Input / Output
Controller

Universal Serial Bus PCI Bus

Mouse GPU

Central Processing Unit

address
bus

CU

PCIR

ALU

registers

PSR

DR

operation
select

increment
PC

AR

0

4

8

16

20

24

28

data
bus

Keyboard HDD Audio SSD Net

context-free grammars

� how they behave

� how to describe languages with them

� how to parse sequences with them

the remaining grammar types

� type 1 grammars

� type 0 grammars

and the machines that correspond to them

3

regular and context-free grammars

regular grammars (and expressions) good for patterns

� identifiers, integers, floating-point numbers, etc.

� the sequence of operations at a traffic light, in the CPU/ALU, etc.

right-hand sides must have no more than one non-terminal and one terminal

<non-terminal> → ε

| terminal
| <non-terminal>
| terminal <non-terminal>

corresponding to a finite-state machine

to describe anything recursive (things nested inside themselves)

� parenthesised expressions, HTML tags, etc.

we need a context-free grammar (CFG)

<non-terminal> → α (where α is any sequence of terminal or non-terminal symbols)

corresponding to a finite-state machine with a stack
4

context

in a CFG, the left-hand side of a rule is a single non-terminal symbol

e.g., the rules

<P> → a <P> a
<P> → b

are both context-free (and generate palindromes “anban”)

the rule

a <P> → a <P> a
is not context-free

� because <P> can only be replaced when it is preceded by an a
� <P> is sensitive to the context in which it appears within the sentence

5

other grammar types

context-sensitive grammars contain rules of the form

α <non-terminal> β → α γ β

(where α and β can be empty, but γ must contain at least one symbol)

� when replacing a non-terminal, the sentential form cannot shrink

the machine corresponding to this kind of grammar is

� a finite-state machine

� plus a memory, that can be accessed in any order
– not limited to stack (LIFO) behaviour, but
– can be limited to the size of the input sentence

this kind of machine is called a linear-bounded automaton (LBA)

� because its memory is linear, and bounded by the size of the input

6

other grammar types

unrestricted (or phrase-structured) grammars can contain rules of the form

α → β

(where α must contain at least one symbol, and β can be anything)

� when replacing a sentential form, the sentence can shrink

⇒ non-terminals can vanish, or appear from nowhere, without warning

the machine corresponding to this kind of grammar is

� a finite-state machine

� plus an infinitely-large, linear memory

this kind of machine is called a Turing machine

� because its inventor was the mathematician Alan Turing

� it is at least as powerful as the most powerful computer we know how to build

7

grammar hierarchy

type 0
unrestricted (phrase-structured)
unbounded linear automaton (Turing machine)

type 1
context-sensitive
linear-bounded automaton

type 2
context-free
push-down automaton

type 3
regular
finite state machine

note that each type of grammar includes all those with higher numbers

� e.g., you can implement a finite state machine (a regular language)

� using a program that generates parsers for context-free languages
– provided you only use rules that are regular

but let’s return to context-free languages, since most of computing is made from
them...

8

syntax and semantics are (often) separated

syntax [mass noun]
• the arrangement of words and phrases to create well-formed sentences in a language

semantics [plural noun]
• the meaning of a word, phrase or text

easy to create sentences that appear meaningless

<sentence> → <noun-phrase> <verb-phrase>
<noun-phrase> → <adjective> <noun>
<verb-phrase> → <verb> <adverb>

<adjective> <noun> <verb> <adverb>

| | | |
considerate tea drinks rapidly

9

syntax conveys meaning about roles and relationships

<adjective> <noun> <verb> <adverb>

| | | |
considerate tea drinks rapidly

even here, we can identify that

something tea
that has a property considerate

does something drinks
in a particular way rapidly

what does this have to do with computer languages?

� syntax can tell us about the roles of symbols and their relationships

to understand how, let’s look at the syntactic structure of expressions

10

grammars describe patterns of symbols
recall our BNF example of addition from last week

<sum> → <identifier> + <identifier>
<identifier> → <letter> | <letter> <identifier>

<letter> → a | b | c | ... | x | y | z
repetition was via recursion

sentential forms replacements

<identifier> (<identifier> → <letter> <identifier>)
→ <letter> <identifier> (<letter> → “v”)
→ v <identifier> (<identifier> → <letter> <identifier>)
→ v <letter> <identifier> (<letter> → “a”)
→ v a <identifier> (<identifier> → <letter>)
→ v a <letter> (<letter> → “r”)
→ v a r

the derivation of “var” is the sequence of replacements that we made

� from the start symbol <identifier> to the final sentence “var”

� numbering distinct ‘appearances’ of a non-terminal will help us see how it evolves
11

derivations form a ‘tree’ structure

sentential forms replacements

<identifier> (<identifier>1 → <letter>1 <identifier>2)
→ <letter> <identifier> (<letter>1 → “v”)
→ v <identifier> (<identifier>2 → <letter>2 <identifier>3)
→ v <letter> <identifier> (<letter>2 → “a”)
→ v a <identifier> (<identifier>3 → <letter>3)
→ v a <letter> (<letter>3 → “r”)
→ v a r

<identifier>
1

<letter>
1
 <identifier>

2

<letter>2 <identifier>3

<letter>3

v

a

r

within the derivation tree

� the root is the start symbol

� the leaves are the terminal symbols

� the branches are the sequences of

non-terminal replacements that were made

to reach each terminal symbol from the start symbol

12

derivations form a ‘tree’ structure

<expression> → <expression> + <expression>
| <expression> * <expression>
| <number>

<number> → 0 | 1 | ... | 8 | 9

let’s try to find a derivation for:

1 + 2 * 3

(remember: ‘ | ’ does not imply an order, and any alternative that works is acceptable)

13

syntactic structure can be ambiguous

the sentence can be generated in two ways

� the choice makes no difference to the language defined by the grammar

1 + 2 * 3
<expression> * <expression>

<number>
1

<expression> + <expression>

<number> <number>

31 2

<expression> + <expression>

<number> <expression> * <expression>

<number> <number>

1 2 3

however, the meaning of the sentence is its value (as an arithmetic expression)

before applying an operator, all its operand values must be calculated

⇒ values are calculated bottom-up
– from the leaves of the tree up towards the root

the two derivations apply operators in a different order

� the choice of derivation makes a big difference to the meaning of the sentence
14

ambiguity creates uncertainty of meaning

Jungyun Seo and Robert F. Simmom Syntactic Graphs: A Representation for the Union of All Ambiguous parse Trees

I
vpp rood npp [4,arrow,Nl I \f I 11

Sentence: Time flies like an arrow.

Figure 6 Graph Representation and Parse Trees of a Highly Ambiguous Sentence.

reading, because each node can be a modifier node only
once in one reading. Therefore, we can focus on the
arcs pointing to the same node as ambiguous points. In
terms of triples, any two triples with identical modifier
terms reveal a point of ambiguity, where a modifier term
is dominated by more than one node.

In the example in Figure 1, the syntactic ambiguities
are found in two arcs pointing to [4,on,p] and in three
arcs pointing to [7,w-it, la,p]. The PP with head [4,on]
modifies the VP whose head is [1,see] and it also
modifies the NP with head [3,ma~]. Similarly three
different in-arcs to the node [7,wit~] show that there
are three possible choices to which Node 7 can be
attached. The semantic processor can focus on these
three possibilities (or on the earlier two possibility set),
using semantic information, to choose one dominator.
Lacking semantic information, the ambiguities will re-
main in the graph until they can be resolved by addi-
tional knowledge from the context.

Property 2: Since all words in a sentence must be
used in every syntactic interpretation of the sentence
and no word can have multiple categories in one
interpretation, one and only one node from each
position must participate in every reading of a syn-
tactic graph. In other words, each syntactic reading
derived from a syntactic graph must contain one and
only one node from every position.

Since every node, except the root node, must be
attached to another node as a modifier node, we can
conclude the following property from properties 1 and
2.

Property 3: In any one reading of a syntactic graph,
the following facts must hold:
I. No two triples with the same modifier node can

co-occur.
2. One and only one node from each position,

except the root node of the reading, must appear
as a modifier node.

Another advantage of the syntactic graph representa-
tion is that we can easily extract the intersection of all
possible syntactic readings from it. Since one node from

each position must participate in every syntactic read-
ing of a syntactic graph, every node which is not a root
node and has only one in-arc, must always be included
in every syntactic reading. Such unambiguous nodes are
common to the intersections of all possible readings.
When we know the exact locations of several pieces in
a jigsaw puzzle, it is much easier to place the other
pieces. Similarly, if a semantic processor knows which
arcs must hold in every reading, it can use these arcs to
constrain inferences to understand and disambiguate.

Property 4: There is no information in a syntactic
graph about the range of terminals spanned by each
triple, so one triple may represent several constitu-
ents which have the same head and modifying terms,
with the same relation name, but which span differ-
ent ranges of terminals.

The compactness and handiness of a graph representa-
tion is based on this property. One arc between two
nodes in a syntactic graph can replace several compli-
cated structures in the tree representation, and multiple
dominating arcs can replace a parse forest.

For example, the arc vnp from [1,see,v] to
[3,man,n] in Figure I represents three different con-
stituents. Those constituents have the same category,
vpl, the same head, [1,soo,v], and the same modifier,
[3~nan,n], but have different inside structures of the
modifying constituent, np, whose head is [3,man,n].
The modifying constituent, np, may span from [2,a] to
[3,ma~], from [2,a] to [6,hfll], or from [2,a] to
[9,telescope]. Actually, in the exclusion matrix de-
scribed below, each triple with differing constituent
structure is represented by multiple subscripts to avoid
the generation of trees that did not occur in the parse
forest.

Another characteristic of a syntactic graph is that the
number of nodes in a graph is not always the same as
that of the words in a sentence. Since some words may
have several syntactic categories, and each category
may lead to a syntactically correct parse, one word may
require several nodes. For example, there are eight

Computational Linguistics, Volume 15, Number 1, March 1989 2S

15

ambiguity creates uncertainty of meaning

Jungyun Seo and Robert F. Simmons Syntactic Graphs: A Representation for the Union of All Ambiguous Parse Trees

. , J l [I'se''vl I vtp . _ . . . _ ~

/ .I"... . ,

, , i i , . , . , . . .o . .o , I
I dot

Sentence: I saw a man on the hill w i th a telescope. I[8,a,artl [

Figure 1: Syntactic Graph of the Example Sentence.

trees in a shared, packed-parse forest) We claim that a
syntactic graph represented by the triples and an exclu-
sion matrix contains all important syntactic information
in the parse forest.

In the next section, we motivate this work with an
example. Then we briefly introduce X (X-bar) theory
with head projection, which provides the basis of the
graph representation, and the notation of graph repre-
sentation in Section 3. The properties of a syntactic
graph are detailed in Section 4. In Section 5, we
introduce the idea of an exclusion matrix to limit
possible tree interpretations of a graph representation.
In Section 6, we will present the definition of complete-
ness and soundness of the syntactic graph representa-
tion compared to parse trees by showing an algorithm
that enumerates all syntactic readings using the exclu-
sion matrix from a syntactic graph. We claim that those
readings include all the possible syntactic readings of
the corresponding parse forest. Finally, after discussing
related work, we will ~uggest future research and draw
some conclusions.

2 MOTIVATIONAL EXAMPLE

We are currently investigating a model of natural lan-
guage text understanding in which syntactic and seman-
tic processors are separated. 4 Ordinarily, in this model,
a syntactic processor constructs a surface syntactic
structure of an input sentence, and then a higher level
semantic processor processes it to understand the sen-
tence---i.e., syntactic and semantic processors are pipe-
lined. If the semantic processor fails to understand the
sentence with a given parse tree, the semantic processor
should ask the syntactic processor for another possible
parse tree. This cycle of processing will continue until
the semantic processor finds the correct parse tree with
which it succeeds in understanding the sentence.

Let us consider the following sentences, from Waltz
(1982):

I saw a man on the hill with a telescope.
I cleaned the lens to get a better view.

When we read the first sentence, we cannot determine
whether the man has a telescope or the telescope is used
to see the man. This is known as the PP-attachment
problem, and many researchers have proposed various
ways to solve it (Frazier and Fodor 1979; Shubert 1984,
1986; Wilks et. al 1985). In this sentence, however, it is
impossible to choose a correct syntactic reading in
syntactic processing---even with commonsense knowl-
edge. The ambiguities must remain until the system
extracts more contextual knowledge from other input
sentences.

The problems of tree structure representation in the
pipelined, natural language processing model are the
following:

First, since the number of parse trees of a typical
sentence in real text easily grows to several hundreds,
and it is impossible to resolve syntactic ambiguities
by the syntactic processor itself, a semantic processor
must check all possible parse trees one by one until it
is satisfied by some parse tree. 5
Second, since there is no information about where the
ambiguous points are in a parse tree, the semantic
processor should check all possibilities before accept-
ing the parse tree.
Third, although the semantic processor might be
satisfied with a parse tree, the system should keep the
status of the syntactic processor for a while, because
there is a fair chance that the parse tree may become
unsatisfactory after the system processes several
more sentences. For example, attaching the preposi-
tional phrase (PP) "with a telescope" to "hill" or
"man" would be fine for the semantic processor,
since there is nothing semantically wrong with these
attachments. However, these attachments become
unsatisfactory after the system understands the next

20 Computational Linguistics, Volume 15, Number 1, March 1989

16

grammar can impose correct syntactic structure

<sum> → <sum> + <product>
| <product>

<product> → <product> * <number>
| <number>

<number> → <digit> | <digit> <number>

<digit> → 0 | 1 | ... | 8 | 9

<sum> + <product>

<number> <product> * <number>

<number> <number>

1 2 3+ *

ambiguity has been removed

� any given expression has only one derivation

� the language did not change
– the exact same set of sentences can be derived

� higher-precedence operators are placed ‘lower’ in the grammar

� recursion provides repetition of same-precedence operators

does it matter whether we use left- or right-recursion for the repetition?

17

correct syntactic structure imposes correct semantics

<expression> → <assignment> | <sum>

<assignment> → <id> = <assignment>

<sum> → <sum> + <product>
| <sum> - <product>
| <product>

<product> → <product> * <number>
| <product> / <number>
| <product> % <number>
| <number>

using left recursion for “+” . . . “%” makes them all left-associative

� “7-3-1” means 7-3 = 4, then 4 -1 = 3 (not 3 -1 = 2, then 7-2 = 5)

using right recursion for assignment makes it right-associative

� “a = b = 42” means b = 42, then a = b (not a = b, then b = 42)

18

abstract syntax trees

parse trees contain too much information

we don’t really care that

� an <expression> made a <sum>, and

� the <sum> made a <sum> + <product>, and

� the <sum> made a <number>, and the <number> made a 3, and

� the <product> made a <number>, and the <number> made a 4

all we really wanted to know was

� <number=3> + <number=4>

this kind of tree is called an abstract syntax tree (AST)

� it encodes only what is required to understand the meaning of the sentence

given an AST we could (e.g.) evaluate it, or compile it into machine code

“ 1+2*3” −→
binary +

binary *num 1

num 2 num 3
19

parsing

generating sentences from a grammar is easy

� replace non-terminals, choosing arbitrary right-hand sides

� eventually a sentence appears, along with its derivation (the set of choices)

parsing goes in the opposite direction

� given a grammar, and a sentence...

� find a derivation that produces the sentence

this is a far harder problem

there are many (many) algorithms for parsing

� and a different classification system for grammars

� based on which parsing algorithms work with them

enough for an entire course (and beyond)

let’s look at one way to write parsers by hand

� which works well for many kinds of computer languages and applications

20

recursive-descent parsing

the basic idea:

� write functions that follow the structure of the grammar

each function has

� input: a string and a position within the string

� output: true/false (was the input recognised)
– advancing the input position if it was

text = "your input sentence goes here"
position = 0
def parseSomething():

if cannot recognise Something at text[position]: return False
position += size of Something that was recognised
return True

21

recursive-descent parsing

identifiers revisited

<identifier> → <letter> | <letter> <identifier>
<letter> → a | b | c | ... | x | y | z

to parse a letter

� recognise a valid alternative

def parseLetter(): # a | b | ... | y | z
global text, position
if text[position] < "a" or text[position] > "z": return False
position += 1
return True

to parse an identifier, we can ‘left factor’ the rule to simplify it

� parse a letter, then an optional identifier

def parseIdentifier(): # letter | letter identifier ≡ letter identifier*
global text, position
if not parseLetter(): return False
parseIdentifier()
return True

22

returning values from parser rules

text = "hello+there$" # $ is explicit end-of-text marker
position = 0
lval = None

def parseLetter(): # a | b | ... | y | z
global text, position, lval
if text[position] < "a" or text[position] > "z": return False
lval = text[position]
position += 1
return True

def parseIdentifier(): # letter | letter identifier ≡ letter identifier*
global text, position, lval
start = position
if not parseLetter(): return False
parseIdentifier()
lval = text[start:position]
return True

print(parseIdentifier())
print(position)
print(lval)

23

constructing an AST during parsing
text = "hello+there$" # $ is explicit end-of-text marker

def parseIdentifier(): # letter | letter identifier
global text, position, lval
start = position
if not parseLetter(): return False
parseIdentifier()
lval = ["identifier", text[start:position]]
return True

def parseSum(): # sum + identifier | identifier ≡ identifier (+ identifier)*
global text, position, lval
if not parseIdentifier(): return False
saved = position
result = lval
while text[position] == "+":

position += 1
if not parseIdentifier():

print("identifier expected at position " + str(position))
exit()

result = ["add", result, lval]
saved = position

lval = result
return True

24

homework

reinforce your understanding

� see if you can write a parser for addition and multiplication
– in Python
– the input should be a string, e.g., “1+2*3”

� produce an AST for the input
– for a numbers N , make a list: [’number’, N]
– for additions, make a list: [’add’, left-child , right-child]
– for multiplications, make a list: [’mul’, left-child , right-child]

� verify you produce the correct ASTs for different expressions
– including things like “1+2+3*4” and “1+2*3+4”

� write a function that can evaluate your AST and print the result

ask about anything you do not understand

� from any of the classes so far this semester (or the lecture notes)

� it will be too late for you to try to catch up later!

� I am always happy to explain things differently and practice examples with you

25

glossary

abstract syntax tree — one possible result of parsing, similar to a parse tree but
containing only the information that is necessary to extract the meaning of the input.

bottom-up — (tree algorithms) an algorithm that begins at the leaves of the tree, and
proceeds up the tree towards the root. At each step, processing of a node in the tree
is performed only when all of its children have been completely processed.

branches — the paths through a tree that connect the root to the leaves.

compile — convert a source code program into executable machine code.

context-sensitive grammars — grammars in which rules specify the context in
which a non-terminal must occur in order to be replaced by the right-hand side.

context — the symbols in a sentence (or sentential form) preceding or following a
non-terminal symbol.

derivation — the sequence of replacement steps performed to convert the start
symbol of a grammar into a valid sentence.

evaluate — calculate a value for a structure, such as a numerical value for a tree
representing an arithmetic expression.

26

leaves — the nodes at the ends of the branches in a tree, which have no children.

linear-bounded automaton — a finite state automaton with randomly accessible
memory bounded by some upper limit, such as the size of the input data.

parse tree — a tree showing the parent-child relationships produced by the
sequence of replacements made in a derivation of a sentence.

phrase-structured — (grammar) another name for an unrestricted grammar.

root — (of a tree) the top-most node in a tree, which has no parent.

top-down — (tree algorithms) an algorithm that begins at the root of the tree and
proceeds down the tree towards the root.

tree — a structure in which nodes have parent-child relationships, each node having
exactly one parent (except for the root, which has no parent).

Turing machine — an automaton that has an infinitely large memory.

unrestricted — a grammar in which anything goes, the only restriction being that the
left-hand side of a rule cannot be empty.

27

