Computer Mathematics

Week 10 Examples

1. A 4-bit *shift register* has one input D and four outputs $Q_0 \dots q_3$. When the clock ticks, the outputs are shifted left and the input is shifted into the register. In other words, following changes occur: $Q_3 \leftarrow Q_2$, $Q_2 \leftarrow Q_1, Q_1 \leftarrow Q_0, Q_0 \leftarrow D$. Draw a logic circuit that implements a 4-bit shift register.

2. A bi-directional shift register can shift either left or right, copying D into either Q_3 or Q_0 respectively, depending on another input called 'direction'. Draw a logic circuit that implements a bi-directional shift register.

3. Seven-segment LED displays are common (e.g., in elevators). They can display the digits 0 to 9 and often the letters A to F (hexadecimal digits). A controller for seven-segment displays converts a binary number (in the range 0 to 15) into seven signals that control whether each of the seven segments a through g is on or off.

	Segments (✓ = ON)								Segments (= ON)</th <th>Display</th>							Display
A F B C D DP	а	b	C	d	е	f	g	Diopidy	а	b	C	d	е	f	g	Ciopiay
	~	<	\checkmark	~	\checkmark	>		0	/	1	~	~	~	~	\checkmark	8
		~	~					- 1	~	✓	~			\checkmark	<	9
	1	~		1	~		/	2	/	>	<		\checkmark	<	$\overline{}$	Ŗ
	1	~	>	~			~]			<	<	<	<	\checkmark	6
		~	/			~	~	4	~			\checkmark	~	\checkmark		[
	~		/	~		>	>	5		<	<	\checkmark	$\overline{}$		\checkmark	ď
	1		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	6	\checkmark			\checkmark	<	\leq	\checkmark	E
	\checkmark	<	<					7	<				\checkmark	\checkmark	\checkmark	F

Draw a logic circuit that converts a 4-bit binary input number into a signal that controls whether segment *d* is on or off.

Add a four-bit shift register to the inputs of your circuit, so that the display can be programmed using just two signals (serial data and a clock). Represent your seven-segment driver as a single box with four inputs (the digit to display) and seven outputs (driving each LED segment), and your shift register as a single box with five inputs (four data inputs plus clock) and four outputs.