
Introduction to Design (2)

Microcontrollers and Interfacing

Week 07
Managing multiple outputs

Department of Mechanical and Electrical System Engineering



connecting several leds

2

3

4

5

GND

330

330

330

330

connect up to 20 LEDs (or other digital devices)

• pins 0 to 13 give 14 outputs, plus six analogue pins can be digital outputs too

• beware of pins 0 and 1, which are used for serial communication

• pins 2–13 are therefore recommended for digital outputs

2



represent all LED states as a single integer

writing one output at a time is tedious

• desired effect is buried inside lots of digitalWite()s

why not use an int to represent many LED states? integer: 1 0 1 1
↓ ↓ ↓ ↓

meaning:  #   
on off on on

• one integer is made of many digits

• use each digit to store the state of one LED

each LED only has two states: on or off

• only need two digits, e.g., 0 and 1

• can use binary (base 2) instead of decimal (base 10)

• binary is how the computer stores integers internally

3



decimal and binary numbers

bi
na

ry

de
ci

m
al

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

decimal numbers (base 10)

• the rightmost column has weight 100 = 1 (‘units’ column)

• weight increases 10× per column towards the left

103 102 101 100

1000 100 10 1

× × × ×
101110 = 1 + 0 + 10 + 1

↑ ↑ 1000 + 0 + 10 + 1 = 1011

digits base

binary numbers (base 2)

• the rightmost column has weight 20 = 1 (‘units’ column)

• weight increases 2× per column towards the left

23 22 21 20

8 4 2 1

× × × ×
11012 = 1 + 1 + 0 + 1

8 + 4 + 0 + 1 = 13

4



testing the bits in an integer

on our microcontroller, an integer contains 16 binary digits (bits)

• an int can represent the state of up to 16 digital outputs

each bit in the integer corresponds to one output pin

• its value is either 0 or 1

the bits (digit columns) in the integer have power-of-two weights

• 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768

use the & (‘and’) operator with a column weight to test if the corresponding bit is 1

1 0 1 1integer bits =
8 4 2 1

(1 & bits)

(2 & bits)

(4 & bits)

(8 & bits)

true

false
true

true

column weights =

integer
representing
LED states

digit in column is ‘1’?

program expression to
test bit corresponding to

given column weight

5



setting LEDs according to the bits in an integer

test each bit in an integer, set LED pin to HIGH or LOW accordingly

1 0 1 1integer bits =
8 4 2 1

(1 & bits)

(2 & bits)

(4 & bits)

(8 & bits)

true

false
true

true

column weights =

integer
representing
LED states

LED state is ‘on’?

program expression to
test bit corresponding to

given column weight LEDs

5 4 3 2 = output pin

void setLEDs(int bits) {
// � bit weight � corresponding output pin �

if (bits & 1) digitalWrite(2, HIGH); else digitalWrite(2, LOW);
if (bits & 2) digitalWrite(3, HIGH); else digitalWrite(3, LOW);
if (bits & 4) digitalWrite(4, HIGH); else digitalWrite(4, LOW);
if (bits & 8) digitalWrite(5, HIGH); else digitalWrite(5, LOW);
// similarly for column weights 16, 32, 64, 128, etc.

}

e.g: 1210 = 11002 represents pins 5 and 4 being HIGH, and pins 3 and 2 being LOW
6


