
Introduction to Design (2) Microcontrollers and Interfacing

Week 07 Managing multiple outputs

connecting several leds

connect up to 20 LEDs (or other digital devices)

- pins 0 to 13 give 14 outputs, plus six analogue pins can be digital outputs too
- beware of pins 0 and 1, which are used for serial communication
- pins 2–13 are therefore recommended for digital outputs

represent all LED states as a single integer

writing one output at a time is tedious

• desired effect is buried inside lots of digitalWite()s

why not use an int to represent many LED states?

- one integer is made of many digits
- use each digit to store the state of one LED

each LED only has two states: on or off

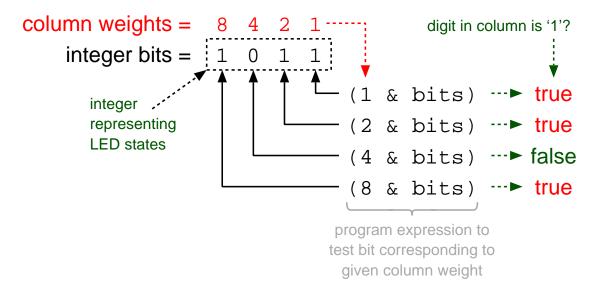
- only need two digits, e.g., 0 and 1
- can use binary (base 2) instead of decimal (base 10)
- binary is how the computer stores integers internally

integer:1011 \downarrow \downarrow \downarrow \downarrow \downarrow meaning: \bigcirc \bigcirc \bigcirc \bigcirc on off on on

decimal and binary numbers

decimal numbers (base 10) • the rightmost column has weight $10^0 = 1$ ('units' column)									binary	decimal
• weight increases $10 \times$ per column towards the left									0000	0
									0001	1
	10^{3}		10^{2}		10^{1}		10^{0}		0010	2
	1000		100		10		1		0011	3
	×		Х		X		×		0100	4
$1011_{10} =$	1	+	0	+	10	+	1		0101	5
\uparrow \uparrow	1000	+	0	+	10	+	1	= 1011	0110	6
digits base									0111	7
									1000	8
binary numbers (base 2)									1001	9
• the rightmost column has weight $2^0 = 1$ ('units' column)									1010	10
• the hyperbolic column has weight $2 - 1$ (units column)									1011	11
• weight increases $2 imes$ per column towards the left									1100	12
-	2^{3}	2^2	-	2^1		2^0			1101	13
		_							1110	14
	8	4		2		1			1111	
	×	×		Х		×				10
$1101_2 =$	1 +	1	+	0	+	1				
	8 +	4	+	0	+	1	= 13			

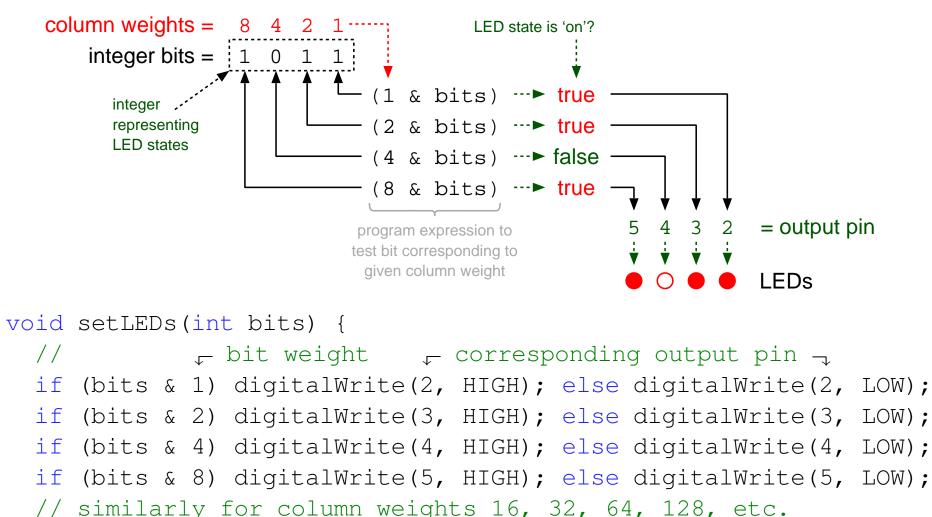
testing the bits in an integer


on our microcontroller, an integer contains 16 binary digits (bits)

- an int can represent the state of up to 16 digital outputs each bit in the integer corresponds to one output pin
 - its value is either 0 or 1

the bits (digit columns) in the integer have power-of-two weights

• 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768


use the & ('and') operator with a column weight to test if the corresponding bit is 1

setting LEDs according to the bits in an integer

test each bit in an integer, set LED pin to HIGH or LOW accordingly

e.g: $12_{10} = 1100_2$ represents pins 5 and 4 being HIGH, and pins 3 and 2 being LOW