
Introduction to Design (2)

Microcontrollers and Interfacing

Week 08

using LED arrays
direct access to I/O registers

parallel digital output

Department of Mechanical and Electrical System Engineering

this week

parallel digital output

• connecting many LEDs

• software techniques

fast parallel output

• directly accessing memory-mapped hardware registers

• configuring, writing and reading I/O pins in parallel

2

LED arrays: bar graph

many kinds of display are just ‘lots of LEDs’

• LED arrays

the simplest is the bar graph display; typically

• ≈ ten identical LEDs, all in one package

• each LED independent of the others (no common connections)
⇒ 10 LEDs × 2 terminals each = 20 pins on the package

polarisation is important: an index tells us where pin 1 is located

• pins 1–10 are the anodes, and pins 11–20 are the corresponding cathodes

index 1 2 3 4 5 6 7 8 9 10

20 19 18 17 17 15 14 13 12 11

20 19 18 13 12 11

1 2 3 8 9 10

16 15 14

5 6 7

17

4

3

LED arrays: bar graph

each LED requires its own series resistor: ouch!!

Individual, discrete current-limiting series resistors.

→

10 current-limiting resistors in a single network.

you have two ‘parallel resistor networks’ that make this painless

common
pin

10 x 470 resistors

black dot indicates
common pin

4

direct access to I/O pins

the I/O pins are connected to pin and port registers

• each register is 8 bits wide

• PIN registers are for input only, PORT registers are for output only

• digital pins 0 to 7 are connected to PIND/PORTD

• digital pins 8 to 13 are connected to PINB/PORTB

microcontroller inputs

PINB PIND

012345678910111213

(not usable)

bit 7 6 5 4 3 2 1 0 6 5 4 3 2 1 07

microcontroller outputs

PORTB PORTD

012345678910111213

(not usable)

bit 7 6 5 4 3 2 1 0 6 5 4 3 2 1 07

5

direct access to I/O pins

each physical pin is either an input or an output, but not both at the same time

pin configuration (input or output) is done using the data direction register (DDR)

• each DDR is 8 bits wide: each bit configures one digital pin
0 for input (default): corresponding PORT bit can be set to 1 or 0
1 for output: corresponding PIN bit can be read as 1 or 0

• DDRD configures digital pins 0–7; DDRB configures digital pins 8–13

microcontroller

Data Direction Register

PORT Register (output)

PIN Register (input)

pinMode()

digitalWrite()

digitalRead()

input / output pins

6

direct access to I/O pins

the registers can be read/written directly by programs using symbolic names

registers
pins port direction output input

0 – 7 PORTD DDRD PORTD PIND

8 – 13 PORTB DDRB PORTB PINB

reading a PORT register returns the last value you wrote there

binary constants can be written, e.g: B0110 (equal to 6), B00100000 (bit 5 set)

use ‘bit-wise’ operators (&, |, ˆ, and ~) to modify only relevant pins

~x inverts each bit in x ~B00100000 == B11011111

x &= y clears bits in x where y has 0s x &= B11011111

or x &= ~B00100000

x |= y sets bits in x where y has 1s x |= B00100000

x ^= y inverts bits in x where y has 1s x ^= B00100000

7

direct access to I/O pins

using ‘bit-wise’ operators for pin configuration and I/O

void setup() {
DDRB |= B00111000; // set pins 13, 12, 11 as outputs

}

void loop() {
PORTB &= ~B00100000; // set pin 13 LOW, LED is off
delay(100)
PORTB |= B00100000; // set pin 13 HIGH, LED is on
delay(100)

PORTB ^= B00010000; // toggle pin 12

int p9 = (PINB >> 1) & 1; // copy input pin 9...
PORTB |= (p9 << 3); // ...to output pin 11

PORTB |= (PINB & B00000010) << 2; // same thing in one line
}

this is approximately 25 times faster than using digitalWrite()

• e.g., PWM frequencies of hundreds of kHz are possible
8

