
Introduction to Design (2)

Microcontrollers and Interfacing

Week 11

digital input, debouncing,
interrupt-driven input

Department of Mechanical and Electrical System Engineering

this week

digital input

• push-button switches

• pull-up resistors

debouncing

• in software

• in hardware

non-timer interrupts

• for digital input

2

digital input

configuring ditial pin as input: void pinMode(n, INPUT)

• pin becomes high impedance (high resistance)

• microcontroller does not generate a voltage on the pin

• microcontroller senses the voltage applied to the pin

reading the voltage on the pin: int digitalRead(n)

• returns HIGH or LOW

transition from LOW to HIGH is somewhere between GND (0 V) and Vcc (5 V)

• how do we find the exact voltages involved?

3

digital input

from this we can calculate

• the maximum voltage that is guaranteed to be LOW

• the minimum voltage that is guaranteed to be HIGH

note: from the leakage current we can also calculate

• the effective input resistance of a digital I/O pin

4

push-button switches

‘normally open’ push-button

• converts physical movement into a resistance change

• two contacts

• when button not pressed, contacts are open (not connected, infinite resistance)

switch open

• when button pressed, contacts are closed (connected, zero resistance)

switch closed

challenge: design a circuit that produces

• 5 V when a switch is open (not pressed), or

• 0 V when a switch is closed (pressed)

5

push-button switches

Arduino

DN

5V

47
k

GND

Arduino

DN

5V

47
k

GND

switch
open

switch
closed

5V 0V

0.
1

m
A

1
µA

6

digital input circuit

two switches and seven-segment display can be connected at the same time

• set mode of digital pins 2 and 3 to INPUT

• pull-up resistors keep them HIGH

• pressing a switch pulls them LOW

• use digitalRead() to read the value (HIGH or LOW)

A

B

C

D

E

F

G

DP GND

7-segment
display

ATmega328

D4

D5

D6

D7

D8

D9

D10

D11

GND

D3

D2

GND

5V

47
k

47
k

330

330

330

330

330

330

330

330

10

9

7

5

4

2

1

6 3

GND
8

7

digital input breadboard layout

some switches have four terminals

usually these are arranged in pairs,
internally connected from one side of
the device to the other

this is very convenient for our circuit

GND

5V
digital
input

pin
47k

note: we have to connect the switches to
digital pins 2 and 3 (which are the only
pins that support interrupts)

to make room for them, move the
7-segment display connections up by two
pins and modify the program accordingly

8

digital input software

pins connected to switches should be configured as INPUTs
void setup() {
pinMode(2, INPUT);
pinMode(3, INPUT);

}

when a switch is pressed, the corresponding input changes from HIGH to LOW

two consecutive digitalRead()s will therefore return different results

• the first is HIGH (switch open⇒ not pressed)

• the second LOW (switch closed⇒ pressed)
int oldState = HIGH;

void loop() {
int newState = digitalRead(2);
if (oldState == HIGH && newState == LOW) {
// the switch was pressed

}
oldState = newState;

}

9

switch bounce

10

debouncing

when our circuit (sketch) is fast enough

• each transisition of the signal can be seen as a separate ‘button press’

• one physical press is counted many times

debouncing

• attempts to elimintate the false ‘presses’

• each physical press is counted only once by software

can be done in hardware or in software

11

hardware debouncing

need a circuit that will

• react quickly to the initial press

• recover slowly from closed (LOW) to open (HIGH)

• delay recovery until all ‘bouncing’ has ceased

press settled

HIGH

LOW

INPUT

OUTPUT

gradual recovery

HIGH/LOW
threshold

release

HIGH

bouncing

12

capacitors

time delays (or filtering high-frequency noise) often done with a capacitor

• stores charge

• voltage proportional to stored charge

• rate of charging (current)

inversely proportional to voltage

R C

5V GND

IC

VC

time constant τ = R× C
• time taken to reach 63% charge

R× C × . . . condition reached

τ × 0.7 50% of final voltage
τ × 1.0 63% of final voltage
τ × 4.0 98% of final voltage
τ × 5.0 ‘fully’ charged

13

capacitor markings

2200µF
polarised

100 nF
(10× 104 pF)

+ −

marking value
101 100 pF 100 pF

222 2200 pF 2.2 nF

103 10000 pF 10 nF

104 100000 pF 100 nF

14

hardware debouncing

connect a capacitor across the switch terminals

• switch closed: capacitor discharges instantly

(through the switch)

• switch open: capacitor recharges slowly

(through the pull-up resistor)

time constant τ = 47000× C
• if longer than bouncing duration, then

• input remains LOW during bouncing

e.g: 100 nF gives τ = 5 ms

ATmega328

DN

5V

47
k

debouncing
capacitor

GND

15

software debouncing

introduce a delay after detecting a press

• wait a fixed amount of time (enough for the switch to ’settle’)
– must deal with worst possible behaviour⇒ delay may be noticeable
– stops the program doing useful things while ‘busy waiting’
– does not deal with releasing the switch

better idea: simulate a capacitor using a counter

• when the switch is closed, the counter (capacitor) is reset (discharged)

• when the switch is open, the counter (capacitor) is incremented (recharging)

• button press occurs when counter (capacitor) changes from full to empty

using a counter

• can be performed in steps, one step each time loop() runs

• deals properly with releasing the switch

16

software debouncing

eliminate the need for physical capacitor

simple approach: add fixed delay

• must design for worst possible switch behaviour

• delay is long enough (many tens of milliseconds) to be noticeable

better approach: simulate the capacitor

• software timer represents the charge on the capacitor

when switch state is ‘open’ and input is LOW

• counter is reset to zero (simulated capacitor is discharged)

• switch state changes to ‘closed’

when switch state is ‘closed’ and input is HIGH

• counter increments each cycle (simulated capacitor charging)

• when counter reaches a threshold, switch state changes to ‘open’

17

pull-up resistors

pull-up resistors used very often

• can be provided externally, but

• every switch input requires one, so

• microcontroller can provide internal pull-up resistors

configure pin as INPUT_PULLUP

• enables internal pull-up resistor to 5 V

internal pull-up resistors are ≈20k Ω

• 0.25 mA flows out of the pin when it is pulled LOW

18

concurrency

sketch does only one thing

• read switch inputs, adjust counter, display digit

most of the time the switch is not pressed

• most of the time, the sketch is doing nothing (very busily)

difficult to integrate other repetitive tasks

better design:

• perform repetitive tasks in loop()

• respond to events (e.g., switch presses) by interrupting normal tasks
– interruption is transparent to normal tasks

19

interrupts

loop() {
 ...
 ...
 ...
 ...
}

intSvcRoutine() {
 ...
}

external event
(e.g., input pin
state change)
occurs here

implicit, immediate
(asynchronous)
call to interrupt
service routine

return from ISR
resumes program

normal program flow
and logic does not
interact with input
pins

some services already provided by regular interrupts

• e.g., millis() which returns number of milliseconds elapsed since reset
– counter incremented by a simple ISR every 1 ms

can also be triggered by input changes on pins 2 and 3

20

interrupts

two input pin interrupts associated with pin 2 or pin 3

interrupt handler installed in setup() using attachInterrupt()

• digitalPinToInterrupt(pin) tells you the interrupt number

void setup() {
pinMode(2, INPUT);
attachInterrupt(digitalPinToInterrupt(2), myISR, CHANGE);

}

void myISR() {
// ... deal with state change on pin 2 ...

}

attachInterrupt() has three arguments:

• the interrupt number

• the handler function (interrupt service routine)

• the state that triggers an interrupt: HIGH, LOW, RISING, FALLING, CHANGE

21

interrupt triggers

HIGH

LOW

RISINGFALLING CHANGE

HIGH HIGH

LOW

trigger name interrupts triggered...
LOW continuously while input is LOW
HIGH continuously while input is HIGH
RISING whenever input transitions from LOW to HIGH

FALLING whenever input transitions from HIGH to LOW

CHANGE whenever input changes state (rising or falling)
22

interrupt handlers (service routines)

interrupts are disabled while a handler is running

• handler must finished quickly

• handler cannot use delay(), millis(), serial I/O, etc.
– all of these rely on interrupts of their own to work properly

• handler should not (normally) re-enable interrupts
– risk of the handler being called repeatedly from within itself

if you need millisecond time in your ISR,

• update a global variable in loop() with the current millis()

non-linear, unpredictable control flow confuses the compiler

• global variables modified from inside an ISR must be declared volatile

– warns the compiler that their value might change asynchronously, at any time

e.g:

volatile unsigned long eventCounter = 0;

void myISR() { eventCounter += 1; }

23

exercises

create and use digital inputs

• push buttons

control a counter with them

• displayed on the seven-segment display

debounce the buttons in hardware

• attach a parallel capacitor

debounce the buttons in software

• using a delay

• by simulating a capacitor

manage the buttons in the background using interrupts

24

