Introduction to Design (2)
Microcontrollers and Interfacing

Week 13
Serial communication with devices:
Inter-Integrated Circuit (I°C) and
Serial Peripheral Interconnect (SPI) protocols

BrEEHFAE
Sy RENJTIM
KYOTO UNIVERSITY of ADVANCED SCIENCE

Department of Mechanical and Electrical System Engineering

KU

this week

history of board-level serial communications

I°C: topology, messages

SPI: topology, data exchange

example device: MCP3204 quad 12-bit ADC with SPI
e timing
e cCircuit

e |ayout

the SPI library

KUAS
| history

1982: Philips was putting digital integrated circuits (ICs) into TV sets
e TV control (channel buttons on the front, etc.) had to communicate with the ICs
e ICs had to communicate with each other
e ‘mini serial network’ developed: Inter-Integrated Circuit (1°C) protocol
e very good for configuring devices with control registers

1985: Motorola released a microcontroller based on the 68000 architecture
e needed a way to communicate with diverse, fast peripherals
e simplicity and speed were very important
e point-to-point protocol developed: Serial Peripheral Interface (SPI)
e very good for streaming data to/from external devices

I°C topology

two wires: data (SDA) and clock (SCL)

bus-based: devices send ‘messages’ to each other
e message begins with destination device address
e specifies whether the message is a read or write operation
e master controls clock

e master and slave can both transmit to exhange a byte followed by an
acknowledgement bit

VDD
R R
12C Master1 12C Master2 P
sbA || |
SCL

i ['

1°C Slave1| [I2C Slave?2| [I°C Slave3

KU

127 devices can be connected
e cach device has an address

e Mmessages are sent to a specific device

I°C messages

e Mmessages are byte oriented, and either read or write (not both)

e the protocol is half-duplex

SCL SDA L

seven-bit slave address

R/W

ack

eight data bits

ack

SCL SDA_[

(bus claim)

1x slave address and direction byte
N x data bytes

(bus release)

SPI topology

simple case: one master, one slave
e master controls slave select and clock
e two data lines: MOSI (master—slave) and MISO (slave—master)
e data clocked on both lines every clock cycle
e stream of bits (no byte orientation), and protocol is full-duplex

master slave
() ()
SCK serial clock |
VDS master out, slave in o Mo
M SO L master in, slave out M SO
< b slavg select »d SS
(active low)

S
- SPI with multiple slaves

common case: one master, a few slaves
e MISO is high-impedance (disconnected) unless slave selected
e only one slave select can be active at any given time

e needs additional slave select wire for each additional slave
— (can be avoided with shift registers, binary decoders, etc.)

slave 3
 E—

> SCK

MOSI

M SO

master
)
SCK serial clock
NS master out, slave in
M SO | master in, slave out
Sso P
L slave O slave 1 slave 2
SS1 p———)))
SS2 p—— »b> SCK »b> SCK »b> SCK
SS3 p—— MOS! MOS! MOSI
~— M SO M SO M SO
—— Sss —d SS —d SS
slave selects N—— N—— ~——

KUAS SPI data exchange

phase 0 = leading edge
serial clock SCK ... ___ polarity 0 = idle low

slave select SS | '
master out MOS| W mso)~ -~ Y~ Yo YOO
master in MISO --—-— @ (msb ™~ - "~ JTso —--

SPI clock mode | clock active

(polarity, phase) | idles edge
0 (0,0) low leading (rising) 1
1(0,1) low trailing (falling) [
2(1,0) high leading (falling) I
3(1,1) high trailing (rising) L{

wAS SPI example: MCP3204

CHOO{1 ™~ 140 Vpp
4-channel, 12-bit A/D converter CH1O2 2z 130 Vger
CH2O3 @ 12[dAGND
CH34 § 1MOCLK
NCO5 B 100D
Vpp 5V power supply NC 6 R oh ch;m
DGND 0V digital ground DGND [7 80 CS/SHDN

AGND 0V analogue ground

Vrer reference voltage, sets the upper limit of input voltage (corresponding
to the maximum digital A/D output value)

CHO—CH4 the four analogue input channels
CLK SPI serial clock input
Din SPI serial data input (equivalent to MOSI)
Dout SPI serial data output (equivalent to MISO)
CS SPI active-low chip select (equivalent to SS)

KbAs SPI example timing

CcS
MCU latches data from A/D

converter on rising edges of SCLK ' '
SCLK 11 (2] |3] |4] |5 [6] |7 |8 9 nNg N1 n2z n3 n4 60 7 (8 21

A e S R B

GL 3
Din /Start\<s|3|%7< D2>< D1 ><DO Don’t Care
HI-Z NULL
Dour \B|T/<B11XB1O>< BQX 88>< B7 ><86><B5><B4><B3><BZ>< B1><Bo>i

Start
MCU Transmitted Data Bit
(Aligned with falling SGL
edge of clock) 0] 0] 0] 0] 0] 1 el P2 DIDO| X | X | X | X| X]| X X| X| X X X| X]| X| X

MCU Received Data

gAdlégenggc\fgtcf;()rising 2020222 2] 2| 2 2 | 2| 2 |noi]B11B10 B9| B8 B7|B6|B5|B4|B3|B2|B1|B0
I | || |

Data stored into MCU receive Data stored into MCU receive Data stored into MCU receive
o , , .. register after transmission of first register after transmission of register after transmission of last
X ="Don't Care” Bits g pjts second 8 bits 8 bits

10

KU

SPI example circuit

(5V) (Voo Vier)
ek 10k
scK (13) P20 >SCK CHO >
M SO (12) master in, slave out M SO o |oeeeeee
VoS! (11) master out, slave in VOS] T .
I | _
Ss (10) [y seled d SS STl -
(active low)
Arduino DAND AGND
MCP3204
_ GN\D Y, _ Y,

11


~~~~~~~~~~~~~~~~~~~~~~~~ SPI example layout

Put any
analogue
sources that
you want here.
These are
only some
suggestions.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

i
Bl IOREF
[E RESET

n N
| ] L4
m 3.3V .CO. °
= sv IRNE. o 4 [ | D
'jGNDvlml = X c D
-GNnglq:l P R 0 C‘D.
.VI””.(D. w e e N U ® o
H A0 :LU: ~ o e e l: o
W Al .Z. o ‘@@ e C ® o LI ]
lAZ%lI—l w e e CIN ® » o e
.A3.—l<tl - o e® ] e = LI
ma Bl n D nanaine cmmms
IASE.--"-. “ee® e e o e e
- ‘99 o @ N

12



AS the SPI library

Arduino has hardware support for SPI, and a library for accessing it
e include the SPI library

#include <SPI.h>

e configure the SPI library

void setup/()

{
SPI.begin();

SPI.setClockDivider (SPI_CLOCK_DIV1é6); // 1 MHz
SPI.setDataMode (SPI_MODEQ); // idle low, leading edge
SPI.setBitOrder (MSBFIRST) ;

}
e use the SPI library to transfer 8 bits at a time
byte misoValue = SPI.transfer (mosiValue);

misoValue is read in at the same time that mosivalue is written out
e note: you are responsible for managing any ‘chip select’ signals!

13



KUA

‘bit banging’

when no hardware support for SPI (or any other protocol)
e assign some digital I/O pins to the needed signals
e implement the protocol manually, by writing/reading the pins
e this is known as ‘bit banging’

SPI signals

#define SSN 10 // slave select pin
#define MOSI 11 // master out (slave in) pin
#define MISO 12 // master in (slave out) pin
#define SCK 13 // serial clock pin

SPI configuration

void setup () {
pinMode (SSN, OUTPUT) ; digitalWrite (SSN, HIGH); // slave inactive
pinMode (SCK, OUTPUT) ; digitalWrite (SCK, LOW); // clock idle
pinMode (MOSI, OUTPUT);
pinMode (MISO, INPUT);

14



write a single bit to SPI device

void sendBit (unsigned char bit)
{
digitalWrite (MOSI, bit & 1);
digitalWrite (SCK, HIGH);
digitalWrite (SCK, LOW) ;

read a single bit from SPI device

int recvBit (void)

{
digitalWrite (SCK, HIGH);
int bit = digitalRead (MISO);
digitalWrite (SCK, LOW);
return bit;

//
//
//

//
//
//

‘bit banging’

write value to device

clock data
clock idle

clock data
read value
clock idle

into device

out of the device
from device

15



‘bit banging’

example transaction: perform Analogue to Digital Conversion

int readADC (int channel) {
digitalWrite (SSN, LOW);

sendBit (1) ;
sendBit (1) ;

sendBit (channel >> 2);
sendBit (channel >> 1);
sendBit (channel) ;

sendBit (0) ;
sendBit (0) ;

int advalue = 0;

for (int i= 0; i < 12; ++1)
(

advalue = (advalue << 1)
digitalWrite (SSN, HIGH);

return advalue;

//

//
//

//

//

//
//

slave select active

start bit
single—ended mode

ms bit

1s bit

discard empty result bit
discard null result bit

+ recvBit () ;

// slave select inactive

5 |6

7

8 9 11 1 4 7 21

Data is clocked out of A/D I I

converter on falling edges

e ot G O D 0 D B D B E

16



