
Introduction to Design (2)

Microcontrollers and Interfacing

Week 13

Serial communication with devices:
Inter-Integrated Circuit (I2C) and

Serial Peripheral Interconnect (SPI) protocols

Department of Mechanical and Electrical System Engineering



this week

history of board-level serial communications

I2C: topology, messages

SPI: topology, data exchange

example device: MCP3204 quad 12-bit ADC with SPI

• timing

• circuit

• layout

the SPI library

2



history

1982: Philips was putting digital integrated circuits (ICs) into TV sets

• TV control (channel buttons on the front, etc.) had to communicate with the ICs

• ICs had to communicate with each other

• ‘mini serial network’ developed: Inter-Integrated Circuit (I2C) protocol

• very good for configuring devices with control registers

1985: Motorola released a microcontroller based on the 68000 architecture

• needed a way to communicate with diverse, fast peripherals

• simplicity and speed were very important

• point-to-point protocol developed: Serial Peripheral Interface (SPI)

• very good for streaming data to/from external devices

3



I2C topology

two wires: data (SDA) and clock (SCL)

bus-based: devices send ‘messages’ to each other

• message begins with destination device address

• specifies whether the message is a read or write operation

• master controls clock

• master and slave can both transmit to exhange a byte followed by an
acknowledgement bit

4



I2C messages

127 devices can be connected

• each device has an address

• messages are sent to a specific device

• messages are byte oriented, and either read or write (not both)

• the protocol is half-duplex

SCL SDA (bus claim)

seven-bit slave address R/W ack 1× slave address and direction byte

eight data bits ack N× data bytes

SCL SDA (bus release)

5



SPI topology

simple case: one master, one slave

• master controls slave select and clock

• two data lines: MOSI (master→slave) and MISO (slave→master)

• data clocked on both lines every clock cycle

• stream of bits (no byte orientation), and protocol is full-duplex

SCK

MOSI

master

MISO

SS

SCK

MOSI

slave

MISO

SS

serial clock

master out, slave in

master in, slave out

slave select
(active low)

6



SPI with multiple slaves

common case: one master, a few slaves

• MISO is high-impedance (disconnected) unless slave selected

• only one slave select can be active at any given time

• needs additional slave select wire for each additional slave
– (can be avoided with shift registers, binary decoders, etc.)

SCK

MOSI

master

MISO

SS0

serial clock

master out, slave in

master in, slave out

slave selects

SCK

MOSI

slave 0

MISO

SS

SCK

MOSI

slave 1

MISO

SS

SCK

MOSI

slave 2

MISO

SS

SCK

MOSI

slave 3

MISO

SS

SS1

SS2

SS3

7



SPI data exchange

polarity 0 = idle low

phase 0 = leading edge

serial clock SCK

slave select SS

master out MOSI msb ... ... ... lsb

master in MISO msb ... ... ... lsb

SPI clock mode clock active
(polarity, phase) idles edge

0 (0, 0) low leading (rising)
1 (0, 1) low trailing (falling)
2 (1, 0) high leading (falling)
3 (1, 1) high trailing (rising)

8



SPI example: MCP3204

4-channel, 12-bit A/D converter

© 2008 Microchip Technology Inc. DS21298E-page 1

MCP3204/3208

Features
• 12-bit resolution
• ± 1 LSB max DNL
• ± 1 LSB max INL (MCP3204/3208-B)
• ± 2 LSB max INL (MCP3204/3208-C)
• 4 (MCP3204) or 8 (MCP3208) input channels
• Analog inputs programmable as single-ended or 

pseudo-differential pairs
• On-chip sample and hold
• SPI serial interface (modes 0,0 and 1,1)
• Single supply operation: 2.7V - 5.5V
• 100 ksps max. sampling rate at VDD = 5V
• 50 ksps max. sampling rate at VDD = 2.7V
• Low power CMOS technology:

- 500 nA typical standby current, 2 µA max.
- 400 µA max. active current at 5V

• Industrial temp range: -40°C to +85°C 
• Available in PDIP, SOIC and TSSOP packages

Applications
• Sensor Interface
• Process Control
• Data Acquisition
• Battery Operated Systems

Functional Block Diagram

Description
The Microchip Technology Inc. MCP3204/3208
devices are successive approximation 12-bit Analog-
to-Digital (A/D) Converters with on-board sample and
hold circuitry. The MCP3204 is programmable to
provide two pseudo-differential input pairs or four
single-ended inputs. The MCP3208 is programmable
to provide four pseudo-differential input pairs or eight
single-ended inputs. Differential Nonlinearity (DNL) is
specified at ±1 LSB, while Integral Nonlinearity (INL) is
offered in ±1 LSB (MCP3204/3208-B) and ±2 LSB
(MCP3204/3208-C) versions.

Communication with the devices is accomplished using
a simple serial interface compatible with the SPI
protocol. The devices are capable of conversion rates
of up to 100 ksps. The MCP3204/3208 devices operate
over a broad voltage range (2.7V - 5.5V). Low current
design permits operation with typical standby and
active currents of only 500 nA and 320 µA,
respectively. The MCP3204 is offered in 14-pin PDIP,
150 mil SOIC and TSSOP packages. The MCP3208 is
offered in 16-pin PDIP and SOIC packages.

Package Types

Comparator

Sample
and
Hold

12-Bit SAR

DAC

Control Logic

CS/SHDN

VREF

VSSVDD

CLK DOUT

Shift
Register

CH0

Channel
Mux

InputCH1

CH7*

* Note: Channels 5-7 available on MCP3208 Only

DIN

VDD

CLK
DOUT

M
C

P3204

1
2
3
4

14
13
12
11
10

9
8

5
6
7

VREF

DIN

CH0
CH1
CH2
CH3

CS/SHDNDGND

AGND

NC

VDD

CLK
DOUT

M
C

P3208

1
2
3
4

16
15
14
13
12
11
10
9

5
6
7
8

VREF

DIN
CS/SHDN
DGND

CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7

NC

AGND

PDIP, SOIC, TSSOP

PDIP, SOIC

2.7V 4-Channel/8-Channel 12-Bit A/D Converters
with SPI Serial Interface

VDD 5V power supply
DGND 0V digital ground
AGND 0V analogue ground
VREF reference voltage, sets the upper limit of input voltage (corresponding

to the maximum digital A/D output value)
CH0–CH4 the four analogue input channels

CLK SPI serial clock input
DIN SPI serial data input (equivalent to MOSI)

DOUT SPI serial data output (equivalent to MISO)
CS SPI active-low chip select (equivalent to SS)

9



SPI example timing

© 2008 Microchip Technology Inc. DS21298E-page 21

MCP3204/3208

6.0 APPLICATIONS INFORMATION

6.1 Using the MCP3204/3208 with 
Microcontroller (MCU) SPI Ports

With most microcontroller SPI ports, it is required to
send groups of eight bits. It is also required that the
microcontroller SPI port be configured to clock out data
on the falling edge of clock and latch data in on the
rising edge. Because communication with the
MCP3204/3208 devices may not need multiples of
eight clocks, it will be necessary to provide more clocks
than are required. This is usually done by sending
‘leading zeros’ before the start bit. As an example,
Figure 6-1 and Figure 6-2 illustrate how the MCP3204/
3208 can be interfaced to a MCU with a hardware SPI
port. Figure 6-1 depicts the operation shown in SPI
Mode 0,0, which requires that the SCLK from the MCU
idles in the ‘low’ state, while Figure 6-2 shows the
similar case of SPI Mode 1,1, where the clock idles in
the ‘high’ state. 

As is shown in Figure 6-1, the first byte transmitted to
the A/D converter contains five leading zeros before
the start bit. Arranging the leading zeros this way
allows the output 12 bits to fall in positions easily
manipulated by the MCU. The MSB is clocked out of
the A/D converter on the falling edge of clock number
12. Once the second eight clocks have been sent to the
device, the MCU’s receive buffer will contain three
unknown bits (the output is at high impedance for the
first two clocks), the null bit and the highest order four
bits of the conversion. Once the third byte has been
sent to the device, the receive register will contain the
lowest order eight bits of the conversion results.
Employing this method ensures simpler manipulation
of the converted data.

Figure 6-2 shows the same thing in SPI Mode 1,1,
which requires that the clock idles in the high state. As
with mode 0,0, the A/D converter outputs data on the
falling edge of the clock and the MCU latches data from
the A/D converter in on the rising edge of the clock.

 

FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CS

SCLK

DIN

X = “Don’t Care” Bits

17 18 19 20 21 22 23 24

DOUT

NULL
BIT B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0HI-Z

MCU latches data from A/D

Data is clocked out of A/D
converter on falling edges

converter on rising edges of SCLK

DO Don’t CareSGL/
DIFF

D1D2Start

0 0 0 0 0 1 X X X X XDO X X X X X X X X

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

D1D2SGL/
DIFF

Start
Bit

(Null)

MCU Transmitted Data
(Aligned with falling
edge of clock)

MCU Received Data
(Aligned with rising
edge of clock)

X

Data stored into MCU receive
register after transmission of first
8 bits

Data stored into MCU receive
register after transmission of
second 8 bits

Data stored into MCU receive
register after transmission of last
8 bits

Don’t Care

0 0 0 0 0 1 X X X X XDO X X X X X X X X

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

D1D2SGL/
DIFF

(Null)

X

23

B1

X

10



SPI example circuit

Arduino

SCK

MOSI

MCP3204

MISO

SS

serial clock

master out, slave in

master in, slave out

slave select
(active low)

SCK (13)

MOSI (11)

MISO (12)

SS (10)

5V

GND

DGND AGND

VDD

CH3

CH2

CH1

CH0

VREF

10k

11



SPI example layout

12



the SPI library

Arduino has hardware support for SPI, and a library for accessing it

• include the SPI library

#include <SPI.h>

• configure the SPI library

void setup()
{
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1 MHz
SPI.setDataMode(SPI_MODE0); // idle low, leading edge
SPI.setBitOrder(MSBFIRST);

}

• use the SPI library to transfer 8 bits at a time

byte misoValue = SPI.transfer(mosiValue);

misoValue is read in at the same time that mosiValue is written out

• note: you are responsible for managing any ‘chip select’ signals!

13



‘bit banging’

when no hardware support for SPI (or any other protocol)

• assign some digital I/O pins to the needed signals

• implement the protocol manually, by writing/reading the pins

• this is known as ‘bit banging’

SPI signals

#define SSN 10 // slave select pin
#define MOSI 11 // master out (slave in) pin
#define MISO 12 // master in (slave out) pin
#define SCK 13 // serial clock pin

SPI configuration

void setup() {
pinMode(SSN, OUTPUT); digitalWrite(SSN, HIGH); // slave inactive
pinMode(SCK, OUTPUT); digitalWrite(SCK, LOW); // clock idle
pinMode(MOSI, OUTPUT);
pinMode(MISO, INPUT);

}

14



‘bit banging’

write a single bit to SPI device

void sendBit(unsigned char bit)
{
digitalWrite(MOSI, bit & 1); // write value to device
digitalWrite(SCK, HIGH); // clock data into device
digitalWrite(SCK, LOW); // clock idle

}

read a single bit from SPI device

int recvBit(void)
{
digitalWrite(SCK, HIGH); // clock data out of the device
int bit = digitalRead(MISO); // read value from device
digitalWrite(SCK, LOW); // clock idle
return bit;

}

15



‘bit banging’

example transaction: perform Analogue to Digital Conversion

int readADC(int channel) {
digitalWrite(SSN, LOW); // slave select active

sendBit(1); // start bit
sendBit(1); // single-ended mode

sendBit(channel >> 2); // ms bit
sendBit(channel >> 1);
sendBit(channel); // ls bit

sendBit(0); // discard empty result bit
sendBit(0); // discard null result bit

int advalue = 0;
for (int i= 0; i < 12; ++i)
advalue = (advalue << 1) + recvBit();

digitalWrite(SSN, HIGH); // slave select inactive

return advalue;
}

© 2008 Microchip Technology Inc. DS21298E-page 21

MCP3204/3208

6.0 APPLICATIONS INFORMATION

6.1 Using the MCP3204/3208 with 
Microcontroller (MCU) SPI Ports

With most microcontroller SPI ports, it is required to
send groups of eight bits. It is also required that the
microcontroller SPI port be configured to clock out data
on the falling edge of clock and latch data in on the
rising edge. Because communication with the
MCP3204/3208 devices may not need multiples of
eight clocks, it will be necessary to provide more clocks
than are required. This is usually done by sending
‘leading zeros’ before the start bit. As an example,
Figure 6-1 and Figure 6-2 illustrate how the MCP3204/
3208 can be interfaced to a MCU with a hardware SPI
port. Figure 6-1 depicts the operation shown in SPI
Mode 0,0, which requires that the SCLK from the MCU
idles in the ‘low’ state, while Figure 6-2 shows the
similar case of SPI Mode 1,1, where the clock idles in
the ‘high’ state. 

As is shown in Figure 6-1, the first byte transmitted to
the A/D converter contains five leading zeros before
the start bit. Arranging the leading zeros this way
allows the output 12 bits to fall in positions easily
manipulated by the MCU. The MSB is clocked out of
the A/D converter on the falling edge of clock number
12. Once the second eight clocks have been sent to the
device, the MCU’s receive buffer will contain three
unknown bits (the output is at high impedance for the
first two clocks), the null bit and the highest order four
bits of the conversion. Once the third byte has been
sent to the device, the receive register will contain the
lowest order eight bits of the conversion results.
Employing this method ensures simpler manipulation
of the converted data.

Figure 6-2 shows the same thing in SPI Mode 1,1,
which requires that the clock idles in the high state. As
with mode 0,0, the A/D converter outputs data on the
falling edge of the clock and the MCU latches data from
the A/D converter in on the rising edge of the clock.

 

FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CS

SCLK

DIN

X = “Don’t Care” Bits

17 18 19 20 21 22 23 24

DOUT

NULL
BIT B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0HI-Z

MCU latches data from A/D

Data is clocked out of A/D
converter on falling edges

converter on rising edges of SCLK

DO Don’t CareSGL/
DIFF

D1D2Start

0 0 0 0 0 1 X X X X XDO X X X X X X X X

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

D1D2SGL/
DIFF

Start
Bit

(Null)

MCU Transmitted Data
(Aligned with falling
edge of clock)

MCU Received Data
(Aligned with rising
edge of clock)

X

Data stored into MCU receive
register after transmission of first
8 bits

Data stored into MCU receive
register after transmission of
second 8 bits

Data stored into MCU receive
register after transmission of last
8 bits

Don’t Care

0 0 0 0 0 1 X X X X XDO X X X X X X X X

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

D1D2SGL/
DIFF

(Null)

X

23

B1

X

16


