
Introduction to Design (2)

Microcontrollers and Interfacing

Week 14
project suggestions

Department of Mechanical and Electrical System Engineering



complete project suggestions: easy

1. electrostatic field detector

A0

GND

4M
7

explore fields near
electrical equipment

• or your hand

display results on

• serial plotter [see week 2], or a

• self-calibrating [week 6] bar-graph display [week 8]

2



complete project suggestions: easy

2. toggle switch from push-button

microcontrollers are good at making simple components more versatile

the switches we have are only ‘on’ while they are pressed

use the microcontroller to convert a push-button into a toggle switch

a toggle switch alternates between ‘on’ and ‘off’
push-button toggle

switch switch

push on on
release off on

push on off
release off off

• to make it go on and then off, you have to press it twice

• most light switches behave like this

begin with a push-button switch [week 11] controlling an LED

• press to turn on, release to turn off (don’t forget to de-bounce)

then change the program to flip between on and off when the button is pressed

• press to turn on, release and then press again to turn off

3



complete project suggestions: easy

void setup(void) {
pinMode(2, INPUT_PULLUP);
pinMode(3, INPUT_PULLUP);
pinMode(4, OUTPUT);

}

int state = 0; // light off

void loop(void) {
if (0 == digitalRead(2)) { // pressed
state = 1 - state; // toggle
digitalWrite(4, state);
while (0 == digitalRead(2))
delay(50);

}
}

3. two-way light switches

make a pair of light switches that control one LED

• pressing either switch should turn the light on

• pressing either switch again should turn the light off

(this is how switches at the top and bottom of stairs often work to control one light)
4



complete project suggestions: easy

4. electronic dice

use a 7-segment LED [week 10] to display a random value from 1 to 6

push button to ‘roll’ the dice

• don’t forget to de-bounce the button!

for extra realism:

• display a rapid sequence of random numbers until the dice stops ‘rolling’

while (buttonPressed) {
for (int i = 0; i < 10; i += 1) {
int digit = random(1, 7); // random number between 1 and 6
displayDigit(digit);
delay(100);

}
}

for extra satisfaction (medium difficulty): add a second button and second display

• you now have two electronic dice!

5



complete project suggestions: easy

5. digital to analogue converter using resistors

ladder of resistors with values R and 2R

• e.g: R = 1.5 kΩ, 2R = 3 kΩ

• build at least 8 bits (your kit has 10 of each of these values)

• check the accuracy using external SPI ADC

b0

2R

R

2R

R

2R

R

2R

2R

b1 bN-2 bN-1

GND

VOUT

N-bit binary number

6



complete project suggestions: easy

7



complete project suggestions: medium

6. build a R-2R DAC with output buffer

the previous project cannot drive a loudspeaker

the loudspeaker resistance is too low and interferes with the the resistor ladder

add an output buffer with very high impedance to drive (e.g.) a loudspeaker

VOUT

VOUT

+

-
VIN

VIN

op-amp buffer transistor buffer

150

5V

GND

1

2

3

4

8

7

6

5

VOUTA

VINA+

VINA-

VINB+

VINB-

VOUTB

GND

5V

MCP6002

1

2

3

4

8

5V

150
GND

GND

BC548

1 2 3

1

2

3

1 collector
2 base
3 emittter

8



complete project suggestions: medium

op-amp buffer: more
complex, better
performance

transistor buffer: simpler,
worse performance (and
input must stay >0.7 V)

9



complete project suggestions: medium

7. morse code transmitter

rebuild the morse code transmitter from earlier

make it generate tones on the loudspeaker

control it by typing messages into the serial monitor

• use Serial.read() to read characters sent from the serial monitor

• ignore characters you don’t recognise

complete project suggestions: advanced
8. morse code receiver

connect some kind of input to the microcontroller

• push-button (don’t forget to de-bounce it)

• light-dependent resistor (use a threshold with hysteresis to determine on/off)

read morse code from the input device

decode the morse code and print the result on the serial monitor

10



complete project suggestions: advanced

9. SPI DAC

use an external SPI [week 13] DAC (MPC4822) to generate sine waves

this DAC circuit is designed to work alongside the SPI ADC circuit, if desired

• DAC and ADC can share SCK and MOSI, but need separate SSN signals

• make sure they are never enabled at the same time!

m
ic

ro
co

nt
ro

lle
r

D13

D11

5V

GND

SDI

SCK

CS

M
C

P
48

22 VOUTA

VOUTB

4

3

2

8

6

VDD

1

7

D9

LDAC5D8

MOSI

SCK

VSS

analogue
outputs

D12 MISO

D10 SSN1

SSN2

(the lab reference material from week 13 shows how to communicate with the DAC)
11



complete project suggestions: advanced

the file sine.h can be downloaded from the course web page

• it contains a table of 4096 integers describing a sine wave

• it also defines a function for you: sine(N) = 2048 + 2047 sin(2πN ÷ 4096)

use a TimerOne interrupt [week 9] and sine() to output a sample every 50µs

#include "sine.h" // download from the web site

const long rate = 20000; // number of output samples per second

void setup(void) {
Timer1.initialize(1000000L / rate); // microseconds between samples
Timer1.attachInterrupt(timer); // sample generator function

}

volatile unsigned int angle = 0, omega = 1000 * 4096L / rate;

void timer(void) {
setDAC(sine(angle)); // sine() is defined in "sine.h"
angle += omega;

}

omega controls the frequency f of sine wave that is generated

• if r is sample rate and there are 4096 entries in one cycle, omega = f × 4096÷ r
12



complete project suggestions: advanced

10. chord generator

extend the SPI DAC circuit to play major and minor chords

use the same sine wave table and sine() function to generate three sine waves

• use three pairs of ‘phase’ and ‘omega’ variables to scan the table
simultaneously

• add the three sample values together, divide the result by 3, send to DAC

• for major chords, use: f0, f1 = 5
4f0, f2 = 3

2f0

• for minor chords, use: f0, f1 = 6
5f0, f2 = 3

2f0

• use a push button to swap between major/minor

• use another push button to change f0 so that you can play several chords
– e.g., it might cycle f0 between 1000 Hz, 1333 Hz, and 1500 Hz

– then f1 and f2 are recalculated based on f0
– you should now be able to ‘play the blues’ on your microcontroller

13



complete project suggestions: advanced

11. waveform generator

use an external SPI (or R-2R) DAC to generate

• sine waves, triangle, or square waves

• with variable frequency, amplitude

use Serial interface to control the waveform

S 1000 100 sine wave, 1000 Hz, 100% amplitude
Q 1200 66 square wave, 1200 Hz, 66% amplitude
T 800 5 triangle wave, 800 Hz, 5% amplitude

void loop(void) {
if (Serial.available() > 0) {
int c = toupper(Serial.read());
int f = Serial.parseInt();
int a = Serial.parseInt();
if (’S’ == c) playSineWave(f, a);
else if (’Q’ == c) playSquareWave(f, a);
else if (’T’ == c) playTriangleWave(f, a);
else disableWave();

}
}

use an analogue input (or SPI ADC) to show the result on the serial plotter
14



complete project suggestions: advanced

12. pulse rate monitor

A0

GND

1M

-

+

10 nF

560 nF

1M

-

+

5V

10k

1k

MCP6002

MCP6002

10 uF
+

15
0

1M m
icrocontroller

place next
to each other

cover with finger
to detect pulse

pulse detector

15



complete project suggestions: advanced

challenge: add two 7-segment displays showing pulse rate in beats per minute
16



complete project suggestions: difficult

if you are able to work with another student, as a team of two...

13. infra-red (IR) communication with ‘bit-banged’ serial protocol

implement your own serial communication (with, e.g., text chat)

• IR LED ‘transmitter’, IR photo-diode ‘receiver’

• explicit encoding/decoding, e.g: 1 start bit, 8 data bits, 1 stop bit

one person makes a transmitter, the other makes a receiver

first step: make sure you can make the photodiode detect pulses from the IR LED!

digital
output

GND330

IR LED

transmitter

receiver

analogue
input

5V4M7

IR photodiode

Note: the photodiode must be
connected ‘backwards’ to work!

1 x7 x6 x5 x4 x3 x2 x1 x0 1

data (8 bits, MSB first)

frame

timeprevious

start
bit

stop
bit

1 x7 x6 x5 x4 x3 x2 x1 x0 1

synchronise on start of frame (wait for rising edge)

verify start bit verify stop bit
read data bits

1/2 bit time 1 bit time

last step: Serial.read() + IR transmit→ IR receive + Serial.write()
17



complete project suggestions: flexible

invent your own project!

• use any input/output devices to gather/display information

• perform any function in between

18



your project

choose a project you feel confident that you can finish

• an easy completed project is much better than an ambitious unfinished project

• use one of the suggested projects if you like
– possibly modified/extended: different input(s), output(s), etc.

• or invent your own project using parts that you have available

ask the instructors about anything you are having difficulty with

• time is short, and help is always available

• do not become blocked because you cannot understand something

• use e-mail to ask for help or advice: ian.piumarta@kuas.ac.jp

(or one of the channels in our MS Teams team)

19



next week

monday:

• project work

• consultation with instructors

• ask questions!

friday:

• project demonstrations

• approximately 5 minutes per project
– what the project is (especially if you invented it)?
– why you chose that project?
– live demonstration (or make a video that you can share)
– what was difficult?
– what did you learn?

20


