
2 ANALOGUE INPUT

Microcontrollers Systems and Interfacing
week 2 experimental lab

1 Communication using the serial monitor
One advantage of using a tethered environment (where the microcontroller is connected to a real computer during development)
is that we can interact with the microcontroller using the USB connection.

1.1 Serial monitor ‘hello world’
The first program most people write on any new platform just prints ‘hello world’. This is very easy to do while the microcon-
roller is tethered to a host computer.

� Send ‘hello world’ from the microcontroller back to the host computer.
In your setup() function, enable serial communication using

Serial.begin(9600). (Serial is the name of the serial communica-
tions device connected to the host computer. The argument 9600 sets the
communication speed, in bits per second, between the microcontoller and the host
computer.)

void setup(void) {
Serial.begin(9600);

}

In your loop() function, print the value of a counter variable on the
Serial device. To make this interesting, increment counter each time the
loop() function is executed. (Declare the counter variable to be static
so that its value is preserved between successive calls to the loop() function.)
Avoid overloading the communication channel by pausing for 250ms at the end of
loop().

void loop(void) {
static int counter = 0;
Serial.println(counter);
++counter;
delay(250);

}

Don’t forget: to see the output, you have to open the serial monitor from the ‘Tools’ menu in the IDE!

� Increase the communication speed.
In some situations, 9600 bits per second is too slow. Increase the communication speed to 19,200 bits per second, or even to
115,200 bits per second. (Note: you will have to modify this number in two places for communication to be successful. If you
have any trouble at all, ask for help!)

� Modify your program to print the counter in binary.
See the reference material in the appendix for information about how to do this.

2 Analogue input
Instead of printing a counter, let’s read a voltage from an external device and report its level back to the host computer.

� Create a variable voltage using a potentiometer.
Disconnect your microcontroller from the host computer.

Then use a breadboard to connect a potentiometer as shown.
(The two outer pins are connected to 0V and 5V. The volate
center pin will vary between these two values as the control
knob is turned.) Do not reconnect the microcontroller yet.

IMPORTANT: The potentiometer must be connected ex-
actly as shown. Incorrect orientation could damage it per-
manently.

Each of the three pins on the potentiometer must be con-
nected to a different row of the breadboard. The centre pin
of the potentiometer must be connected to the analogue input
of the microcontroller. The outer two pins of the potentiome-
ter must be connected to the 5V and GND connections of the
microcontroller.

The potemtiometer pins are fragile. Never force it into
the breadboard or you will break the pins. Place the poten-
tiomenter on the breadboard and then gently rock it back and
forth to encourage the pins into the holes.

bottom view

1



4 CHALLENGES

� Read the value of the voltage and report it to the host computer.
Connect the middle pin of the potentiometer to an analogue input on the microcontroller. (You do not need to configure the
analogue input pins in setup(). The analogue pins are configured as inputs by default.)

Use analogRead() to read a number representing the
voltage on the analogue input pin. (Note that the analogue
input pins are called A0 through A5.) The number you re-
ceive will vary between 0 (when the input pin is at 0V) and
1023 (when the input pin is at 5V). Instead of printing the
counter to the Serial device, print the value you read from
the analogue pin.

void loop(void) {
int value = analogRead(A0);
Serial.println(value);
delay(250);

}

3 Use the input to control an output
Let’s use the analogue input voltage that we are reading to control the frequency of blinking of the LED connected to pin 13.
For this you will need to combine your sketches from last week and this week.

� Make the LED blink each time you read the analogue voltage.
Copy the setup() code from your LED blinking sketch into your analogue voltage reading sketch. Then copy the loop()
code from your LED blinking sketch into your analogue voltage reading sketch. Set the blink period to a couple of hundred
milliseconds. Verify that the LED blinks each time a voltage is reported on the serial monitor.

� Make the LED blink at a rate proportional to the input voltage.
You have delays for the LED ‘on’ and ‘off’ periods (currently using fixed values). You also have a source of variable numbers
between 0 and 1023 controlled by the potentiometer. Combine the two so that your delay times are variable, controlled by the
potentiometer.

Note that for the smoothest operation you should disable any printing code in your loop() function.

4 Challenges
If you want to go further, try some of the following challenges...

4.1 Convert the analogue reading into some other unit
The analogue reading varies between 0 and 1023. These values represent a voltage range of 0V to 5V. Write a sketch that
prints the input voltage instead of the raw analogue value. Hint: use a float variable (instead of an int) to hold the value.

The potentiometer physically turns through 270 degrees. Write a sketch that prints the angle of the potentiometer instead
of the raw analogue value.

4.2 Monitor two analogue inputs at the same time
You have a second potentiometer in your experimental kit that you can connect to A1. Modify your serial monitor program to
print both input voltage values on the same line, separated by a space. Hint: to print a space, use: ‘Serial.print(" ");’.
When this works in the serial monitor, see what happens if you open the serial plotter instead.

4.3 Use two analogue inputs to control a graphical application
If you have completed the previous challenge, and you are comfortable with installing software and writing programs on
your host laptop computer, try using the Arduino analogue inputs to control a program running on your laptop. Begin by
downloading and installing Processing from here: https://processing.org/download/

Open Processing and click on the little blue box top-right of the main window that says “Java”. Select “Add mode. . . ”. A
window will open. Click on “Python Mode for Processing 3” and then on the “Install” button below. Wait a few minutes while
the software is installed. When a green tick appears next to “Python for Processing” you can close the pop-up window. Click
again on the little blue box top-right of the main window that says “Java” and change the mode to “Python”.

Visit the course web site at: https://kuas.org/˜piumarta/id2 and find sketch_etch.pyde in the week 2
materials section. Open the link, copy the program, and paste it into the Processing main window. (Make sure the indentation
looks exactly the same as in the file on the web site, or nothing will work.) Modify the definition of port on the third line to
match the serial port that your Arduino board is connected to. Run the program and have fun with the two potentiometers.

Try changing the delay() value in the Arduino sketch to higher or lower numbers. What effect does it have on your
ability to control the graphical program?

[DIFFICULT] Modify sketch_etch.pyde to print connected lines instead of single points.

� Make some interesting art using the program, take a screenshot, and share it with the rest of the class in the Teams channel.

2



A SERIAL MONITOR FUNCTIONS

Microcontrollers Systems and Interfacing
week 2 reference material

A Serial monitor functions
The following methods can all be used with the Serial object to control two-way communication with the host computer.

begin(speed, config) initialises the serial line to operate at the given speed (baud rate, or bits per second). The config
parameter sets the number of data bits, parity type, and the number of stop bits. The default config is SERIAL 8N1
(1 start bit, 8 data bits, no parity, one stop bit). Digital pins 0 and 1 are used for serial communication, and become
unavailable for input/output after calling this function.

end() disables serial communication. Digital pins 0 and 1 are available for input/output after calling this function.

available() returns the number of bytes available to be read.

read() reads and returns the next byte of seral data. Returns -1 if no data is available.

peek() is similar to read() except the data is not removed from the input buffer.

flush() delays until all outgoing data has been written.

print(value, format) prints the value (a string or a number) on the serial lines. If value is an integer then the optional
format argument tells the function what base to use: BIN, OCT, DEC, or HEX. If value is a floating point number then
the optional format is an integer that controls how many digits are printed after the decimal point. Returns the number of
bytes written to the serial line.

println(value, format) is the same as print() except that a newline character is also printed.

write() writes one or ore bytes to the serial line. When called with one integer argument, the corresponding byte is written
to the serial line. When called with a single string argument, the bytes of the string are written. When called with two
arguments, the first must be a pointer to an array of bytes to be written and the second specifies the length of the array.

Be careful not to send data faster than the configured speed can transmit. Remember that One character is ≈10 bits (1 start
bit, 8 data bits, 0 parity bits, 1 stop bit) and use that to calculate how much information you can send every second:

• 9600 baud (the default) is approximately 960 characters per second;

• 115200 baud (the fastest) is approximately 11520 characters per second.

A small terminal screen (80 columns × 24 lines) contains 1920 characters. The serial buffer (holding data waiting to be sent)
is only 64 bytes long. When it is full, your program will block (stop running) until space becomes available. Use delay(),
and/or Serial.flush(), and/or a counter to limit how often you send data, to ensure that the buffer never becomes full.

3


