
1 CONNECTING EXTERNAL LEDS

Microcontrollers Systems and Interfacing
week 4 experimental lab

1 Connecting external LEDs
The light-emitting diode (LED) connected to digital pin 13 is useful for debugging, but we can make more versatile LED
displays. Let’s connect a couple of LEDs to digital outputs and investigate some interesting behaviour.

1.1 Circuit for each LED
Each LED will be connected to a digital output pin through a current-limiting resistor. (See notes, Section B.) The Arduino
supplies 5 V to the circuit when the output is HIGH. The forward voltage drop of the LED is 2 V, leaving 3 V across the resistor.
We need to limit the current to 10 mA.

digital
output

GND
2V 0V

R
5V (-2V)

10mA

� Use Ohm’s law to calculate the resistor value that allows 10 mA to flow when the voltage across it is 3 V.

Rideal = Ω

Your kit contains the following resistor values: 150 Ω, 180 Ω, 330 Ω, 10 kΩ, 47 kΩ, 4.7 MΩ. None of them are the ideal value.
What value do you have that is just larger than the ideal?

R = Ω

What is the colour code of that resistor?

Hint: the first and second colours should be the same, and the third and fourth colours should be the same. If that is not the
case, please re-check your calculations!

1.2 Breadboard layout for one external LED
Digital outputs 0 and 1 are used for serial communication. We
will therefore connect our LEDs starting at digital output 2.

� Connect one LED as shown on the right.

The picture shows a green LED but you can use any colour
you like. The long lead on the rounded side of the LED is the
anode, connected to the positive side of the circuit. The short
lead on the flat side of the LED is the cathode, connected to
the negative (ground) side of the circuit.

� Create a simple program to blink the LED once per second,
just to verify that the circuit is working.

A few trivial modifications to your very first ‘blink LED 13’
program is all that you need.

1.3 Using multiple LEDs

� Add a second LED to the system.
Make another LED flash in an identical way to the original LED. (The second LED should be connected to digital pin 3.)
Completing this step just requires duplicating (and then slightly modifying) the existing code in setup() and loop(). The
LEDs should make this pattern:

pin 3 LED:
pin 2 LED:
••◦◦••◦◦••◦◦••◦◦ −→ time

1



2 CHALLENGES

� Make the LEDs blink at opposite times.
Modify the program so that when one of the LEDs is on, the other LED is off. The LEDs should make this pattern:

pin 3 LED:
pin 2 LED:
•◦◦••◦◦••◦◦••◦◦• −→ time

� Control the blinking speed using an external analogue voltage.
Connect analogue input A0 to a variable voltage source. When the blue rotary
control is turned fully anti-clockwise, the input will be at 0 V and the value returned
by analogRead() will be 0. When the control is turned fully clockwise, the
input will be at 5 V and the value returned by analogRead() will be 1023.

Make your LEDs blink once every 1023 ms. Then arrange for the value read
from analogue input A0 to change the ratio between the time the LEDs are on or
off, in the range 0 ms to 1023 ms.

Hint: the easiest way to do this is to use the value read from A0 as the time for
the first part of the cycle (let’s call this ‘ta’). Since ta is in the range 0–1023, we
can set the second part of the cycle to ‘1023-ta’ to obtain a total cycle time of
1023 ms. Then the potentiometer will move the ratio between the first and second
parts of the cycle smoothly from 0:100% through 50:50% to 100:0%.

void loop() {
int ta = analogRead(A0);
int tb = 1023 - ta;

digitalWrite(2, HIGH);
digitalWrite(3, LOW );
delay(ta);

digitalWrite(2, LOW );
digitalWrite(3, HIGH);
delay(tb);

}

� Experiment with different delays.
What happens if you divide ta and tb both by 2? Or 4? Or 8, or 16, or 32? Keep
doubling the divisor until something interesting starts to happen.

int ta = analogRead(A0);
int tb = 1023 - ta;

ta = ta / 2;
tb = tb / 2;

// ...
1.4 Using shorter cycle times.
What happens if you increase the divisor to 256? Or 378? When your divisor becomes large, the response of the LEDs should
make it clear that there are only a few discrete values of delay, with abrupt steps between them. To make the delays change
smoothly we have to use more accurate delays, with delayMicroseconds().

� Increase the resolution of the delay, even when short.
Changing delay() into delayMicroseconds() will give you 1000 times
more resolution. To compensate, you should delete the two lines that divide ta
and tb by a constant.

• What do you notice about the number of steps from one extreme of the volt-
age input to the other?

• What practical uses can you think of for the effect that you have just ob-
served?

void loop() {
int ta = analogRead(A0);
int tb = 1023 - ta;

digitalWrite(2, HIGH);
digitalWrite(3, LOW );
delayMicroseconds(ta);

digitalWrite(2, LOW );
digitalWrite(3, HIGH);
delayMicroseonds(tb);

}

2 Challenges

2.1 Make the cycle time variable
Add another potentiometer to your circuit, attached to another analogue input. Use the second analogue input value to control
the overall cycle time. Arrange for the blink frequency to vary between approximately 1 Hz and 256 Hz. (The duty cycle
percentage should continue to be controlled by the first analogue input value.)

Find the lowest blink frequency that does not ‘flicker’. Being careful not to move your potentiometers, modify the program
to print the cycle time on the serial monitor and then upload it. Convert the printed cycle time to a frequency.

Minimum flicker-free frequency: Hz

Compare the number you obtain with those obtained by other people.1

2.2 Investigate PWM with sound instead of light
Reconnect your loudspeaker from last week, in place of one of the LEDs. (Do not forget to use a current-limiting series
resistor!) What happens to the sound when you change the duty cycles of a square wave smoothly from 0% to 100%?

1The higher this number for you the more sensitive you are to low refresh rates in large TV screens and/or the PWM mechanism used to dim laptop displays,
etc. I am very sensitive to flicker and I have a Lenovo laptop on which I cannot dim the display at all, otherwise I rapidly develop a headache from the flicker.

2



B LIGHT-EMITTING DIODES

Microcontrollers Systems and Interfacing
week 4 reference material

A Diodes
VA

VC = VA-0.7V

anode (+)

cathode (-)

stripe

A diode is a device that conducts electricity in only one direction. It has two terminals, the anode
(positive terminal) and the cathode (negative terminal). For the diode to conduct electricity the
anode must be more positive than the cathode; the diode is then said to be forward biased. If the
cathode is more positive than the anode, then the diode is reverse biased and no current will flow.

When a diode is forward biased (conducting) there is always a small voltage drop from the
anode to the cathode. This is called the forward voltage of the diode and is written VF . For a
modern diode, VF is typically 0.7 V.

A.1 Current through a diode
A forward-biased diode has a very low resistance that can be considered zero for almost all purposes. The current flowing in a
circuit that includes a diode therefore depends almost entirely on the components connected in series with the diode.

When forward biased, the diode’s voltage drop is always present and keeps the cathode voltage VF below the anode.

5V

GND
4.3V 0V

2k
i

ii

5V -0.7V

I = V/R

I = 4.3/2000

I = 2.15 mA

In the example above, the supply voltage is known (5 V) and the voltage drop across the diode is known (0.7 V), so the
voltage across the resistor must be 4.3 V. We now know both V and R, so using Ohm’s law we can calculate the current through
the resistor as I = V/R = 4.3/2000 = 2.15 mA. In a series circuit the current through all components is the same, so the
current through the diode must also be 2.15 mA.

B Light-emitting diodes
VA

VC = VA-2V

max
20
mA

anode (+)

cathode (-)

longer

bent tab

flat

A light-emitting diode (LED) is a diode that emits light (usually of a single colour)
when it conducts electricity. The voltage drop is higher than with a diode and depends
on what colour the LED emits. A typical LED has a larger forward voltage than a
normal diode. For LEDs, VF ≈ 2 V, meaning the cathode voltage will be about 2 V
lower than the anode voltage.

LEDs are polarised and must be connected the correct way round. The anode lead
is usually identified by one or more of these methods:

• the anode lead is longer (the cathode is shorter),

• the anode lead is next to a small tab on the LED body (the cathode side is flat), and

• the anode lead is bent (the cathode side is straight).

B.1 Limiting the LED current
Too much current will damage an LED. Typical LEDs are designed to operate with no more than 20 mA. Like any diode, when
a LED conducts it has effectively zero resistance and so connecting it to any voltage source larger than 2 V will cause a huge
current to flow through it. To limit the current to a safe value of 10 mA or so, a resistor connected in series is required.

5V

GND
3V 0V

R
10mA

10mA

5V -2V

10mA
R = V/I

R = 3.0/0.01

= 300 Ω

In the example above, the supply voltage is known (5 V) and the voltage drop across the LED is known (2 V), so the
voltage across the resistor must be 3 V. In a series circuit the current through all components is the same, so to limit the
current through the LED to 10 mA we just need to limit the current through the resistor to 10 mA. We now know both the
voltage V across the resistor and the desired current I through it, so using Ohm’s law we can calculate the required resistance
as R = V/I = 3.0/0.01 = 300 Ω.

3



C PULSE WIDTH MODULATION (PWM)

C Pulse Width Modulation (PWM)
Frequency is inversely proportional to cycle time. With high
frequencies (short cycle times) the human eye cannot see the
individual on/off halves of the cycle; we see just the average
50% brightness of (for example) an LED when driven with a
high-frequency (100 Hz or more) square wave.

The signal is on 50% of the time, which means it is trans-
mitting power to the LED (or other device) onlt 50% of the
time. If we make the HIGH and LOW times unequal, while
keeping the total cycle time constant, we can adjust the ration
of on time to off time, and therefore the amount of power
transmitted to the device. With short on times, the power
transmitted is lower than with long on times.

• The ratio tHIGH/tcycle determines the amount of power
in the signal:

– low power⇒ low volume, low brightness, etc.

• Expressed as a percentage, this ratio is called the duty
cycle of the signal:

– 0% duty cycle transmits no power,

– 50% duty cycle transmits half power,

– 1000% duty cycle transmits full power.

int highTime = cycleTime * duty / 100;

void loop() {
digitalWrite(pin, HIGH);
delayMicroseconds(highTime);
digitalWrite(pin, LOW);
delayMicroseconds(cycleTime - highTime);

}

When one signal A controls another signal B we say that
A modulates B. if A is desired change in power delivered
by B then A controls the duty cycle of B; in other words, A
modulates the width of the pulses in signal B. Hence the name
pulse width modulation.

long cycle time = low frequency

50% of time HIGH 50% of time LOW

short cycle time = high frequency

50%
HIGH

50%
LOW

power transmitted = 50% of maximum

power transmitted = 50% of maximum

power transmitted is independent of cycle (HIGH or LOW) time

cycle time

25% duty

50% duty

75% duty

0% duty
HIGH

LOW

100% duty

high time =
0

high time =
0.25 cycle time

high time =
0.5 cycle time

high time =
0.75 cycle time

high time =
cycle time

pulse width

pulse width

pulse width

pulse

4


