
1 USING EXTERNAL LEDS

Microcontrollers Systems and Interfacing
week 7 experimental lab

1 Using external LEDs
Let’s connect several LEDs to the digital outputs and investigate how to manage them in software.

� Attach some LEDs to digital pins 2, 3, 4, and 5. Use an appropriate series current-limiting resistor for each LED.

2

3

4

5

GND

330

330

330

330

For each LED that you attach:

1. Add a line in the setup() function
that sets the corresponding pinMode to
OUTPUT.

2. Add a line to the loop() function that
uses digitalWrite() to turn the
LED on and off.

3. Run the program to verify that the LED
is working.

void setup() {
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
...etc...

}

void loop() {
digitalWrite(2, HIGH); delay(100); digitalWrite(2, LOW);
digitalWrite(3, HIGH); delay(100); digitalWrite(3, LOW);
...etc...

}

#
#
#

#
#

#

#

#
#

#
#
#

#
#
#

#
#

#

#

#
#

#
#
#

#
#
#

#
#

#

#

#
#

#
#
#

#
#
#

#
#

#

#

#
#

#
#
#

time −→

When you are finished you should have four (or more)
LEDs attached and your program should be flashing all the
LEDs one after the other, in sequence.

1.1 Making patterns on the LEDs

�Modify your program to ‘bounce’ the light back and forth along the line of LEDs.
#
#
#

#
#

#

#

#
#

#
#
#

#

#
#

#
#

#

#
#
#

#
#

#

#

#
#

#
#
#

#

#
#

#
#

#

#
#
#

#
#

#

#

#
#

#
#
#

time −→

Hint: You should be able to do this by duplicating the two
lines of program code that flash the middle two LEDs, and
then reversing their order.

1.2 Displaying information on the LEDs
You have already created circuits and software to read analogue values, for example, from a potentiometer or a light-dependent
resistor. Instead of displaying the values on the serial monitor or plotter, let’s display them on the LEDs.

� Obtain an analogue input on A0.
This could be from a potentiometer, a light-dependent resistor, or a temperature sensor. Create the sensor circuit at the opposite
end of the breadboard (as far away from the LEDs as you can). Print the value of analogRead(A0) on the serial monitor to
make sure your analogue input is working.

1

2 MANAGING LED STATES

� Display the analogue value on the LEDs instead of the serial monitor.
The usual way to do this is to turn on a different number of LEDs depending on the input value. For example, assuming your
analogue input value is between 0 and 100, then you might design your system such that:

input value LEDs lit

< 20 none ####
< 40 2 ###
< 60 2, 3 ##
< 80 2, 3, 4 #
≥ 80 all

void loop() {
int a0 = analogRead(A0);
if (a0 >= 20) digitalWrite(2, LOW); else digitalWrite(2, HIGH);
if (a0 >= 40) digitalWrite(3, LOW); else digitalWrite(3, HIGH);
...etc...

}

? Does your display system respond well to the full range of input values that you your circuit can generate? Does it work better
if you make your program self-calibrating?

2 Managing LED states
Let’s make some more ambitious patterns on the LEDs.

�Make a ‘wave’ pattern that turns on all LEDs, one at a time, then turns them off again, one at a time.
Modify your program to draw more
interesting patterns on the LEDs.
Two possibilities are shown on the
right.

#
#
#

#
#

#

#

#
#

#
#
#

#
#

#

#

#
#

#
#
#

#
#

#

#

#
#

#
#
#

#
#
#

#
#

#

#

#
#

#
#
#

? Are these patterns starting to become difficult to program? Would you be happy making a pattern that repeated after, say, 64
different LED states? What is it about the way the LEDs are managed that makes the programming difficult, or tedious, or
error-prone?

2.1 Representing the state of all four LEDs
Manipulating the individual state (on/off) of each LED as four separate, independent ‘things’
is not convenient. It would be more convenient to use a single value that represents the state
of all four LEDs. For example, by representing the state of the LEDs as a single integer.

Because an LED can only be ‘on’ or ‘off’, we can represent the state of one LED using
a single digit. Let’s use ‘0’ to represent ‘off’ and ‘1’ to represent ‘on’. Four of these digits,
grouped together, represent the state of all four of our LEDs at once.

pin number: 5 4 3 2
LOW (off): 0 0 0 0
HIGH (on): 1 1 1 1

For example, all four LEDs ‘off’ would be represented as ‘0000’,
pin 2 LED ‘on’ would be ‘0001’, pins 4 and 2 LEDs ‘on’ would be
‘0101’, all four LEDs ‘on’ would be ‘1111’, and so on.

There are sixteen such four-digit combinations that together de-
scribe all possible on/off states of four LEDs. Each of these states can
be numbered with an integer in the range 0 to 15. The most sensible
way to generate the numbering (from a mathematical point of view) is
to consider each four-digit group as a binary (base 2) number.1

The table on the right shows how the individual LEDs are combined
into a four-digit binary number representing a particular state of the
LEDs. Each ‘column’ has a power-of-two weight (just as each column
in a decimal number has a power-of-ten weight). For a particular state
of the LEDs, multiplying each digit (0 or 1) by its column’s weight (a
power of two) and then adding them up gives an integer corresponding
to that state.

situation state decimal

all LEDs ‘off’ 0 0 0 0 0
pin 2 LED ‘on’ 0 0 0 1 1
pin 3 LED ‘on’ 0 0 1 0 2
pin 4 LED ‘on’ 0 1 0 0 4
pin 5 LED ‘on’ 1 0 0 0 8
pins 5 and 2 LEDs ‘on’ 1 0 0 1 9
pins 5 and 4 LEDs ‘on’ 1 1 0 0 12
all LEDs ‘on’ 1 1 1 1 15

× × × ×

binary weight: 8 4 2 1 sum

�

= 23 22 21 20

The decimal values corresponding to the states are also shown in the table. However, you do not need to use decimal if you
don’t want to: when programming the LEDs you can work entirely in binary, if you prefer. (Once you get used to it, working
in binary — or any other ‘power-of-two’ number base — is much better than working in decimal, because the microcontroller
itself uses binary representation directly to store and manipulate numbers.)

2.2 Writing a super-useful utility function: setLEDs()
Let’s use an integer to represent the state of all the LEDs. Having decided to do that, the next thing to do is write a function
called setLEDs() that turns LEDs on or off according to the value of that integer.

1Binary (or ‘base 2’) because we are using only two digits, 0 and 1. Compare with decimal (or ‘base 10’) which uses ten digits: 0, 1, ..., 8, 9.

2

2 MANAGING LED STATES

� Create an empty ‘skeleton’ for your setLEDs() function.
The setLEDs() function needs one parameter to tell it what do do: an integer
whose digits (in binary) represent whether each LED should be on or off. Since
setLEDs() does not calculate any useful result to use in an expression, it should
be treated as a command (like digitalWrite()) rather than a function (like
analogRead()). The template therefore should look just like setup() and
loop() (which do not return any result) except that it needs one parameter, whose
type (‘int’) and name (‘pattern’) are written inside the ‘(’...‘)’ parentheses.

void setLEDs(int pattern) {
// turn LEDs on or off
// according to the
// value of PATTERN

}

To perform its task, setLEDs() needs to test individual digits in the binary representation of pattern. Luckily the
programming language that we are using has two features that make this very easy:

1. Integers can be written directly in binary. Just write a ‘B’ (or ‘0b’) followed by the digits (‘0’ or ‘1’) of the number.

2. The numerical operator ‘&’ tells us whether two numbers have a ‘1’ in the same column of their binary representations.

Together these let us test each digit in pattern to see if it is 0 or 1. Let’s explore each of these features briefly before using
them to implement setLEDs().

2.2.1 Exploring binary constants

To investigate the correspondence between decimal and binary num-
bers...

�Make setLEDs() print the numeric value of the patterns param-
eter

First, if necessary, add a statement to initialise the serial monitor in
setup().

Then add a statement to the body of setLEDs() that prints its
parameter ‘pattern’ on the serial monitor.

Finally, in the body of loop(), use the function setLEDs()
several times with some binary constants to see their value in decimal.

? What should the decimal values of each of these binary numbers be?
Try to calculate the values by yourself, but also refer to the table on
the previous page if you are in any doubt.

Upload the program to the microcontroller, open the serial monitor,
and check that the numbers printed correspond to your expectations.

void setup() {
// after other initialisation, add...
Serial.begin(115200);

}

void setLEDs(int pattern) {
Serial.println(pattern);

}

void loop() {
setLEDs(0b0000); // binary
setLEDs(0b0001);
setLEDs(0b0010);
setLEDs(0b0100);
setLEDs(0b1000);
setLEDs(0b1001);
setLEDs(0b1100);
setLEDs(0b1111);
delay(1000); // <-- decimal ;-)

}

� Try changing the numbers in loop() to different binary numbers. Try slightly longer ones. Can you reliably predict the
decimal value of each number you try?

� Print the numbers in binary.
Modify setLEDs() so that it prints pattern in binary. To do this, add a
second parameter to Serial.println() whose value is ‘BIN’. This tells
Serial.println() to use binary when printing pattern. Upload the pro-
gram and check that the output on the serial monitor corresponds to the values
you have written inside the loop() function.

void setLEDs(int pattern) {
Serial.println(pattern, BIN);

}

If you are curious, you can now try printing some decimal numbers in binary. Just replace some of the constants in loop()
with decimal numbers (without the ‘0b’ prefix). Check that you can predict the binary representation for each of the decimal
numbers that you try.1

2.2.2 Exploring the digits of a binary number

Let’s now use the ‘&’ operator to test each individual digit of pattern.

� Print whether each digit of pattern is a ‘0’ or a ‘1’.
The ‘&’ operator (pronounced ‘and’) compares two binary number operands, let’s call them ‘A’ and ‘B’,
digit by digit. The result is a binary number which has the digit ‘1’ in all the places where both A and
B have a ‘1’, and the digit ‘0’ everywhere else. For example, ‘0b1100 & 0b0110’ = ‘0b0100’
because only the third digit (from the right) is a ‘1’ in both input operands. (You can prove this by
putting ‘setLEDs(0b1100 & 0b0110)’ in your loop() function and checking the result in the
serial monitor.) The table shows how & operates for one pair of corresponding digits.

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

1The trick is to figure out how to make the number by adding up powers of two. For example, 42 is made by adding up 32+8+2, which is 25 +23 +21,
and so its binary representation must be ‘101010’.

3

3 REVIEW

To check if a specific digit of a number is 0 or 1, just ‘&’ it with
the power of two corresponding to that digit position. (For example, the
table on the right shows how to check the digits of the number 0b1100.)

The result can be used as the condition in an if statement. If the
tested bit in the number is 1 then the result is non-zero and is considered
‘true’ by the if statement. If the tested bit in the number is 0 then
the result is zero and is considered ‘false’ by the if statement. The
programming pattern for testing digits a binary number (for example,
our pattern parameter) therefore looks like this:

digit number logical
to test tested result value

0b1000 & 0b1100 = 0b1000 ⇒ true
0b0100 & 0b1100 = 0b0100 ⇒ true
0b0010 & 0b1100 = 0b0000 ⇒ false
0b0001 & 0b1100 = 0b0000 ⇒ false

if (0b0001 & pattern) Serial.println("digit 0 is 1"); else Serial.println("digit 0 is 0");
if (0b0010 & pattern) Serial.println("digit 1 is 1"); else Serial.println("digit 1 is 0");
if (0b0100 & pattern) Serial.println("digit 2 is 1"); else Serial.println("digit 2 is 0");
if (0b1000 & pattern) Serial.println("digit 3 is 1"); else Serial.println("digit 3 is 0");

� Print the digit values for various numbers.
Modify setLEDs() so that the body of the function contains the four lines shown above. (To keep the output tidy, you might
want to add an additional Serial.println(), with no parameter, immediately after those four lines.) Check the output on
the serial monitor. Verify that the output in the serial monitor corresponds properly to the digits of the binary numbers that you
are using in loop().

2.2.3 Implementing setLEDs()

You now have everything you need to implement setLEDs(). By replacing

Serial.println("digit 0 is 1") with digitalWrite(2, HIGH) and
Serial.println("digit 0 is 0") with digitalWrite(2, LOW)

(and similarly for the other three if statements in setLEDs()), your setLEDs() function will turn the LEDs on or off
depending on whether the corresponding digits in pattern are 1 or 0. Your setLEDs() function should now look like this:

void setLEDs(int pattern) {
if (0b0001 & pattern) digitalWrite(2, HIGH); else digitalWrite(2, LOW);
if (0b0010 & pattern) digitalWrite(3, HIGH); else digitalWrite(3, LOW);
// insert similar code for pins 4 and 5 here

}

You should now be able to write this week’s very first program in a much more compact way. Test your setLEDs()
function with the following loop() code

void loop() {
setLEDs(0b0001); delay(100);
setLEDs(0b0010); delay(100);
setLEDs(0b0100); delay(100);
setLEDs(0b1000); delay(100);

}

which should produce exactly the same ‘moving dot’ pattern on the LEDs.

� Try other patterns.
Now that you have a working setLEDs() function, try using it to generate some of the other patterns that you made. Are
those patterns easier to make using setLEDs()?

3 Review
This week went deeper into programming theory than previous weeks. The skills that you have learned are very powerful. Here
is a brief summary of the most important points:

• Numbers can be used to represent information that is not numeric. This is a huge ‘design idea’.

• Each binary digit (‘bit’) of an integer can be used to independently store a yes/no, true/false, 1/0, value.

• Integer constants can be written in other bases, for example, using a ‘0b’ prefix to write binary constants.

• In some situations, decimal is not the most convenient number base to use.

• The & (and) operator can be used to test whether a specific digit within an integer is 1 or 0.

• The result of the & operation can be used in an if statement to control what the program does.

The techniques we looked at this week are used by professional embedded programmers every day.

4

4 CHALLENGES

4 Challenges

4.1 Dot mode vs. bar mode

When we displayed an analogue voltage on the LEDs we lit up one,
two, three, or all four LEDs. The LEDs therefore created a solid ‘bar’
of light. An alternative display would light up only one LED accord-
ing to the analogue voltage. Modify your analogue voltage display
program to light only one LED to indicate the level.

LEDs lit
input value ‘bar’ mode ‘dot’ mode

< 20 none #### none ####
< 40 2 ### 2 ###
< 60 2, 3 ## 3 # ##
< 80 2, 3, 4 # 4 ## #
≥ 80 all all ###

4.2 Make a binary counter
Use setLEDs() to make the LEDs count in binary from 0000 to 1111. Do not call setLEDs() sixteen times. Instead call
setLEDs() just once, from inside a loop that uses a variable to count from 0 to 15.

? What happens if you let your variable count from 0 to 31? Why?

4.3 Independent PWM
Use pulse width modulation to illuminate the first LED at 50% brightness, the second at 25%, the third at 12.5%, and the fourth
at 6.25%.

4.4 Independent LED control
Write two functions similar to setLEDs() that work as follows:

enableLEDs(int pattern)
turns on every led corresponding to a 1 in the pattern. LEDs that are not indicated by a 1 in pattern are not affected
(they remain as they were, either on or off).

disableLEDs(int pattern)
turns off every led corresponding to a 1 in the pattern. LEDs that are not indicated by a 1 in pattern are not
affected (they remain as they were, either on or off).

Re-implement setLEDs() using enableLEDs() and disableLEDs(). (Do not use digitalWrite() anywhere
in setLEDs().) Hint: look up the ‘bitwise complement’ operator which is written ‘∼’ in the Arduino programming language.2

(For example, ‘∼x’ is the bitwise complement of ‘x’.)

4.5 Use arithmetic operators on bit patterns
Try setting the LEDs to ‘0b0001 << 0’, then to ‘0b0001 << 1’, and then ‘0b0001 << 2’, and ‘0b0001 << 3’, and
finally ‘0b0001 << 4’. What does the ‘<<’ operator do?

Try setting the LEDs to ‘0b1000 >> 0’, then to ‘0b1000 >> 1’, and then ‘0b1000 >> 2’, and ‘0b1000 >> 3’,
and finally ‘0b1000 >> 4’. What does the ‘>>’ operator do?

[DIFFICULT] Use what you have just discovered to write the ‘back-and-forth bouncing dot’ pattern from Section 1.1 using
only one call to setLEDs(). Do not use an explicit loop in your program.

Hint: instead of explicitly setting the LEDs to the desired patterns, store the initial pattern (e.g., 0b0001) in a variable. In
another ‘current direction’ variable remember whether the pattern is currently moving to the left or to the right. Use the << and
>> operators to update the variable with the next pattern in the sequence. Use & on the pattern in combination with the ‘current
direction’ variable to check if the pattern has ‘reached the end’ of the LEDs and should therefore start moving in the opposite
direction.

4.6 The same, but in decimal
Of course, absolutely everything we just did could also be done (almost identically) using decimal numbers. However, since it
takes log2(10) ≈ 3.32 binary digits to represent one decimal digit everything would be 3.32 times less space efficient (not to
mention the huge extra computational cost of extracting each digit) — and in embedded systems, efficiency is often critical.

[DIFFICULT] Rewrite setLEDs() to check the digits in the decimal representation of pattern. Check that it works
by removing the ‘0b’s from the front of the numbers describing one of your patterns. Hint: to extract a single digit from a
decimal number, divide by 10n (a power of 10) and then take the remainder on division by 10 (using the modulus operator ‘%’).

[EXTREMELY DIFFICULT] Instead of ‘on’ and ‘off’, make the digits between 0 and 9 set the brightness of the corre-
sponding LED between 0% and 100%.

2E.g: https://en.wikipedia.org/wiki/Bitwise_operation#NOT

5

A POSITIONAL NUMBER SYSTEMS

Microcontrollers Systems and Interfacing
week 7 reference material

A Positional number systems
A positional number system represents numeric values as sequences of one or more digits. Each digit in the
representation is weighted according to its position in the number. The weights increase towards the left by a
constant factor called the base or radix (the Latin word for ‘root’). The most familiar positional number system is
decimal, in which the radix is 10.

102 101 100

100 10 1
× × ×

36510 = 3 + 6 + 5
300 + 60 + 5 = 365

Computers represent numbers in hardware using the binary system, in which the radix is 2.

23 22 21 20

8 4 2 1
× × × ×

11012 = 1 + 1 + 0 + 1
8 + 4 + 0 + 1 = 13

A radix R representation uses R distinct digits, starting with ‘0’. Binary uses two digits, ‘0’ and ‘1’. Decimal uses
ten digits, ‘0’ through ‘9’.

bi
na

ry

de
ci

m
al

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

6

