
1 RGB LED ARRAYS

Microcontroller Systems and Interfacing
week 9 experimental lab

1 RGB LED arrays
We saw last week that LEDs arranged in a line are available packaged as a single ‘bar graph’ device for displaying information
visually. The simplest bar graphs contain ten LEDs, each of which is a single colour (and often all are the same colour). A
more versatile LED ‘bar graph’ uses multi-coloured ‘RGB’ LEDs.

An RGB LED is a single device containing three LEDs: one red, one green, and one blue (the
primary colours). Each LED can be illuminated independently. By selectively turning the LEDs
on or off, eight colour combinations are possible: black (all LEDs off), the three primary colours
(one of the LEDs on), the three secondary colours (two of the LEDs on), and white (all three LEDs
on).

colour: black red green yellow blue magenta cyan white

red: off on off on off on off on
green: off off on on off off on on
blue: off off off off on on on on

If each LED is independently controlled by PWM then an almost unlimited number of colours can
be produced by mixing different levels of each of the three primary colours. (This is exactly how
your computer’s colour LCD panel works.)

RGB LED arrays contain multiple RGB LEDs
in a single package. A typical array contains ten
RGB LED segments with ten anode connections
and three cathode connections. Each anode con-
nection is common to single segment, and each
cathode connection is common to all LEDs of the
same colour. Each LED can therefore be illumi-
nated independently by setting the corresponding
anode pin positive and cathode pin negative.

index 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

A B C D E F G H I J

20

19

18

17

16

15

14

13

12

11

10 9 8

1 2 3

A

B

C

D

E

F

G

H

I

J

For example, in the device we are using, the ten anode pins (11 through
20) can be kept normally LOW and the three cathode pins (1, 2, and 3) can
be kept normally HIGH. In that state, none of the LEDs will be illuminated
(because all of them will be reverse biased and therefore not conducting).
To make the first segment (‘A’) light up red we can:

• Set pin 20 of the array HIGH. All LEDs in segment A now have the
reverse bias removed, but they are still ‘off’ because their anodes and
cathodes are at the same (positive) voltage. All LEDs in segments
B – J remain reverse biased and therefore ‘off’.

• Set pin 1 (or pin 10) of the array LOW. All red LEDs now have their
cathodes at 0V. The red LED in segment A is now forward biased
and will conduct, turning it ‘on’. The red LEDs in segments B – J
have their reverse bias removed, but they are still ‘off’ because their
anodes and cathodes are at the same (0V) voltage.

The single LED at the ‘intersection’ of pins 1 and 20 (the red LED in
segment A) will therefore turn ‘on’, while all other LEDs will remain ‘off’.

Each LED is electrically identical to the other LEDs we have been us-
ing. Series current-limiting resistors are therefore necessary. These can be
connected either to the anode pins or the cathode pins. (We will connect
them to the three cathode pins for two reasons. First, it uses fewer resistors.
Second, it lets us choose one of the ten segments and then illuminate any
combination of its three LEDs simultaneously at full brightness.)

� Attach the RGB LED array and its three current-limiting resistors to the
microcontroller.
The RGB array has a black face and is marked ‘OSX10201’. Note that the
orientation is different to the LED arrays we used previously (because the
anode pins are on the opposite side of the package).

2

3

4

5

6

7

8

9

0

1

10

11

12

330

330

330

18

17

16

15

14

13

12

11

20

19

8

9

10

di
gi

ta
l p

in
s

RGB
LED
array

A
B
C
D
E
F
G
H
I
J

1

2 PROGRAMMING THE RGB LEDS

2 Programming the RGB LEDs
Let’s configure the output pins and then turn on some of the LEDs.

� Configure the output pins.

Digital pins 0 through 12 must be configured as OUTPUTs. You can call
pinMode() 13 times if you like, but a while() or for() loop will make
the program more compact.

void setup(void) {
for (int i= 0; i <= 12; i += 1)
pinMode(i, OUTPUT);

}

� Turn on the one of the RGB LEDs.

Setting pin 0 to HIGH for half a second and then back to LOW for half a
second will flash the LEDs in segment A of the array.

? Why is segment A flashing white?

void loop() {
digitalWrite(0, HIGH); delay(500);
digitalWrite(0, LOW); delay(500);

}

The anodes of the LED array are being ‘driven’ by digital pins 0 through 9. Each pin connects to the anodes of the three LEDs
(red, green, blue) in one of the array’s segments. Setting one of these pins HIGH will place 5V on all three of those anodes,
potentially turning on all three of the LEDs.

The cathodes of the LED array are being ‘driven’ by digital pins 10 through 12. Each pin connects to the cathodes of ten
LEDs, one per segment, that have the same colour. By default an output pin is LOW (0V) until changed by digitalWrite().

Initially, therefore, setting one of the anode pins (0 through 9) HIGH will turn on all three LEDs in the corresponding
segment. (This is because the cathodes of all the LEDs are connected to 0V via pins 10 through 12, which are all LOW, and
the series resistors.) Because of the way the human eye works, mixing red, green, and blue light in equal proportions makes us
see what appears to be white light.

� Make segment A flash red instead of white .

To make the segment flash red we have to turn off the green and blue LEDs.
The cathodes of all green LEDs are connected (through a series resistor) to
digital pin 12, and the cathodes of all blue LEDs are connected (through a
series resistor) to digital pin 11. Setting these two pins HIGH places 5V
on the cathodes of the green and blue LEDs. Under these conditions those
LEDs cannot turn on since it is impossible to make their anodes 2V more
positive than the cathodes.

void setup(void) {
for (int i= 0; i <= 12; i += 1)
pinMode(i, OUTPUT);

// turn off all blue and green LEDs
digitalWrite(11, HIGH);
digitalWrite(12, HIGH);

}

� Make segment A flash green instead of red .

Hint: which of pins 10 through 12 should not be set to HIGH in setup()?

� Make segment A flash blue instead of green .

Hint: same as above.

2.1 Accessing every LED independently
Setting all three cathode pins 10, 11, and 12 to HIGH in setup()
disables all LEDs. Setting all ten anode pins 0 through 9 to LOW
(their default value) also disables all LEDs. From that situation, to
turn an LED on requires both a cathode pin to be set to LOW and an
anode pin to be set to HIGH. The cathode pin selects which of the
three colours is ‘enabled’ and the anode pin selects which of the ten
segments is ‘enabled’. The corresponding LED will light up, and all
others will remain off.

void setup(void) {
for (int i= 0; i <= 12; i += 1)
pinMode(i, OUTPUT);

// turn off all red, blue and green LEDs
digitalWrite(10, HIGH);
digitalWrite(11, HIGH);
digitalWrite(12, HIGH);

}

A useful way to think of this is like ‘X-Y’ addressing on a map or similar coordinate system. (The schematic diagram of
the LED array shown at the top of the first page is laid out to suggest this kind of ‘X-Y’ addressing scheme.)

� Turn on all three colours, one at a time, in the A segment.

Hint: first select the A segment by setting the corresponding pin
HIGH. Any colour LED that is now enabled, by setting a corre-
sponding pin LOW, will immediately turn on in segment A. Select
each colour in turn, using a loop, for example.

void loop(void) {
digitalWrite(0, HIGH); // enable A segment
// enable each colour, in turn
for (int i= 10; i <= 12; i += 1) {
digitalWrite(i, LOW); delay(500);
digitalWrite(i, HIGH);

}
digitalWrite(0, LOW); // disable A segment

}

2

2 PROGRAMMING THE RGB LEDS

� Create a utility function to control the colour of a segment.
Let’s make a function setLED() that turns on (or off) any com-
bination of the three colour LEDs for any given segment.

setLED() will take two parameters: the segment number
(0 through 9) and the colour, specified as three yes/no values for
each of red, green, and blue. Similar to setLEDs() last week,
the colour parameter will be an integer whose rightmost three
bits represent the yes/no values for each colour. Red, green, and
blue will therefore correspond to colours 1, 2, and 4, and white
will be colour 7 (all three primary colours on at the same time).

colour parameter: 0 1 2 3 4 5 6 7
colour produced: black red green yellow blue magenta cyan white

To make the function more useful, setting the LED to colour to
0 will disable the segment in addition to turning off all three
colours.

� Test your setLED() function.

The following loop() code exercises the setLED() function.
For each of the 8 possible colours in turn, it switches on each
each LED in turn from segment A to segment J.

void setLED(int segment, int colour) {
if (0 == colour)
digitalWrite(segment, LOW); // disable

else
digitalWrite(segment, HIGH); // enable

if (0 == (colour & 1))
digitalWrite(10, HIGH); // red on

else
digitalWrite(10, LOW); // red off

if (0 == (colour & 2))
digitalWrite(12, HIGH); // green on

else
digitalWrite(12, LOW); // green off

if (0 == (colour & 4))
digitalWrite(11, HIGH); // blue on

else
digitalWrite(11, LOW); // blue off

}

void loop(void) {
for (int colour = 0; colour < 8; colour += 1) {
for (int segment = 0; segment < 10; segment += 1) {
setLED(segment, colour); // turn on the segment and the indicated colours
delay(100);
setLED(segment, 0); // turn off the segment and all 3 colours

}
}

}

2.2 Displaying multiple colours
Because of the ‘X-Y’ addressing scheme for the
LEDs, we cannot turn on two segments at the
same time with a different colour in each segment.
We can, however, exploit persistence of vision to
achieve the same effect by turning each combina-
tion of ‘segment × colour’ on and off very rapidly.

� Display three colours on the array, at the same time.
Use setLED() to turn on the green LED in seg-
ments A to F (pins 0 to 5), yellow (red + green)
LED in segments G to I (pins 6 to 8), and red LED
in segment J (pin 9).

void loop(void) {
for (int segment = 0; segment < 10; segment += 1) {
int colour = 2; // green
if (segment >= 6) colour= 3; // yellow
if (segment >= 9) colour= 1; // red
setLED(segment, colour); // ON
delay(1); // wait a little
setLED(segment, 0); // OFF

}
}

� Make different combinations of colours on the LEDs.
Experiment with the if() statements in the previous goal’s solution, to move the colours around. For example, a light (or
temperature) display might want the first two segments to be blue (for ‘cold’ or ‘dark’), the middle segments green, and the last
two segments red (for ‘hot’ or ‘bright’).

� Move the LED code out of loop() to make way for some application code.
Another useful utility function might update the LEDs
to display a value in the range 0 to 10. Maybe
displayValue() would be a good name for the
function. We might communicate the value to be dis-
played using a variable shared by displayValue()
and loop(), imaginatively called ‘value’, for exam-
ple.

Note the ‘return’ statement that is executed when
the segment number reaches value. This causes the
function to finish early, returning to the place in the pro-
gram where it was used.

int value = 8;

void displayValue(void) {
for (int segment = 0; segment < 10; ++segment) {
if (value <= segment) return;
int colour = 2; // green
if (segment >= 6) colour= 3; // yellow
if (segment >= 9) colour= 1; // red
setLED(segment, colour);
delay(1);
setLED(segment, 0);

}
}

3

3 INTERRUPTS

You can test the displayValue() function by writing a loop() that does nothing but call
displayValue().

void loop(void) {
displayValue();

}

� Add some application code to loop() that updates value.

This can be anything you like. For example you might read A0 to get a
potentiometer value, or make a self-calibrating light meter, or a temperature
meter, etc.

int Vmin = 1024, Vmax = 0;

void loop(void) {
int a0 = analogRead(A0);
Vmin = min(Vmin, a0);
Vmax = max(Vmax, a0);
value = map(a0, Vmin, Vmax, 0, 11);
displayValue();

}

� Display a value that rises steadily from 0 to 10, then falls back to 0, in a repeating cycle.

This one should now be super easy for you! It is very similar
to the programs that made patterns on the LED bar graph. For
extra style, use two loops to update value. Pause for 50ms
with each setting of value so that the entire cycles takes one
second.

? Does your LED display look fantastically cool?

No? Why not? What’s wrong with it? Can you figure out
(without reading any more of this document) why it is behav-
ing like that?

void loop(void) {
for (value= 0; value <= 10; value += 1) {
displayValue();
delay(50);

}
for (value= 9; value >= 1; value -= 1) {
displayValue();
delay(50);

}
}

2.3 The problem with single-threaded programs
Our program is single-threaded. That means a single ‘thread’ of control moves through the program, with only one (very
predictable) thing executing at any time, roughly like this:

1. Run setup().
2. Run loop(), which does the following 20 times:

(a) Update value.
(b) Call displayValue() to flash the LEDs appropriately.
(c) Wait for 50ms before continuing. ← During this time the LEDs are all off !

3. Go back to step 2.

How to fix this? It would be nice to update the LEDs in the ‘background’, independently of loop(). For example, ev-
ery few milliseconds we would like to displayValue() ‘automatically’ regardless of what loop() is doing (including
delay()ing). Fortunately we can do this, by periodically interrupting the program and asking it to displayValue(). This
can be made completely ‘transparent’ to the application code in loop(). In other words, it can be done without involving
loop() at all. Our program will behave as if we have two loop()s running at the same time. One of them will perform the
application code, the other will perform the displayValue() update of the LEDs.

3 Interrupts
An interrupt is a way of diverting the microcontroller from its normal task and asking it to do something different for a while.
Compare it to answering the telephone while you are in the middle of reading a book. Reading the book is the normal activity,
the telephone ringing is the interrupt, and then answering the telephone and talking with the other person for a while is called
servicing the interrupt. When interrupt servicing is finished the telephone call ends and you go back to reading your book from
the point you were interrupted.

The microcontroller has several
sources of interrupts. One source of in-
terrupts are the built-in timers that can
generate a timer interrupt at regular in-
tervals. That is the kind of interrupt
that we need in order to run our second,
background ‘loop()’ function to up-
date the LEDs.

Arduino
system

setup()

loop() background()

timer interrupt "fires" asynchronously every N milliseconds
period background task runs transparently to main program
main program is unaware of background activty

4

3 INTERRUPTS

3.1 The TimerOne interrupt library
A user-friendly interface to timer interrupts is available using the TimerOne library. Before you can use the interface you will
have to install the library.

Open the ‘Sketch’ menu and then select ‘Include Library’ followed by ‘Manage Libraries...’. A new window will open. In
the search box, type “TimerOne”. The display will update to show the libraries that match. Select ‘TimerOne’ and then click
the ‘Install’ button that appears. When the progress bar completes, you can close the window.

To use the library in your program,
choose the ‘Sketch’ menu again and
select ‘Include Library’, and near the
bottom select ‘TimerOne’. In the main
window you should see the line

#include <TimerOne.h>

appear at the top of your program. (If
you prefer, you can also just type that
line into your program; the end result
will be identical.)

3.2 Programming with timer interrupts
Timer interrupts are controlled by several functions grouped together inside
an object called Timer1. To set up a periodic timer, two of these functions
must be called in setup(). The first, Timer1.initialize(), ini-
tialises the timer and tells it how often (in microseconds) it should call the
‘background’ function. The second, Timer1.attachInterrupt(),
tells the timer which of our functions is the ‘background’ function.

The program on the right is a minimal example of using the timer in-
terrupt to perform a background task on the RGB LED array. In setup()
the pins connected to the first two segments and to the red LEDs are config-
ured. All are initially LOW, which disables the two segments but enables the
red LEDs. (Therefore to turn a segment on we need only set its pin HIGH.)
The timer is then asked to generate 10 interrupts per second (100, 000µs
interval) and to call the function background() to service the interrupt.

The background() function uses digitalWrite() to toggle
segment B between ‘on’ and ‘off’ states.

The loop() function meanwhile toggles segment A every half a sec-
ond.

The overall result is that segment A flashes once per second and seg-
ment B flashes five times per second.

#include <TimerOne.h>

void setup() {
pinMode(0, OUTPUT);
pinMode(1, OUTPUT);
pinMode(10, OUTPUT);
Timer1.initialize(100000);
Timer1.attachInterrupt(background);

}

int value = 0;

void background(void) {
digitalWrite(1, value);
value = !value; // not

}

void loop() {
digitalWrite(0, HIGH); delay(500);
digitalWrite(0, LOW); delay(500);

}

5

5 CHALLENGE

4 A multi-colour bar-graph display with background updates
The complete colour bar graph program is
shown on the right.

Two lines have been added to setup()
that set up the timer interrupt to call
background() every 1ms.

The background() function is called
1,000 times per second to update the value dis-
played on the LEDs. It is almost the iden-
tical to the earlier displayValue() func-
tion. The difference is that the for() loop
that iterated through all the segment has been
removed. Instead the currently active segment
is remembered in the variable segment. Each
time background() runs it turns off the ac-
tive segment, makes the next segment active,
and then turns it with the appropriate colour
provided value() is large enough. That
segment then remains lit until the next time
background() runs, and the process repeats.
The result is that background() will cycle
through all ten segments every second, illumi-
nating only those segments permitted by the
current value.

One new feature has been used in this pro-
gram. The variable value has been marked
‘volatile’. This tells the compiler that it
might be accessed at unpredictable times, for
example, when background is called auto-
matically every 1ms. For that reason, the com-
piler takes extra care when updating value in
loop() to make sure any unpredictable func-
tions such as background() ‘see’ the cor-
rect value. A general ‘rule of thumb’ is that
you should mark ‘volatile’ any variable that
can be accessed from both normal code (like
loop()) and unpredictable asynchronous code
(like background()).

#include <TimerOne.h>

void setup() {
for (int pin = 0; pin <= 12; pin = pin + 1)
pinMode(pin, OUTPUT);

digitalWrite(10, HIGH);
digitalWrite(11, HIGH);
digitalWrite(12, HIGH);

Timer1.attachInterrupt(background);
Timer1.initialize(1000);

}

void setLED(int segment, int colour) {
if (0 == colour)
digitalWrite(segment, LOW); // disable segment

else
digitalWrite(segment, HIGH); // enable segment

if (0 == (colour & 0b001))
digitalWrite(10, HIGH); // red on

else
digitalWrite(10, LOW); // red off

if (0 == (colour & 0b010))
digitalWrite(12, HIGH); // green on

else
digitalWrite(12, LOW); // green off

if (0 == (colour & 0b100))
digitalWrite(11, HIGH); // blue on

else
digitalWrite(11, LOW); // blue off

}

volatile int value = 0; // volatile => ‘unpredictable’
int segment = 0; // currently active segment

void background(void) {
setLED(segment, 0); // turn off active segment
segment += 1;
if (segment > 9) segment = 0;
if (value <= segment) return;
int colour = 2; // green
if (segment >= 6) colour= 3; // yellow
if (segment >= 9) colour= 1; // red
setLED(segment, colour); // turn on active segment

}

void loop(void) {
// value = 0 1 2 ... 8 9 10
for (value= 0; value <= 10; value += 1) delay(50);
// value = 9 8 7 ... 3 2 1
for (value= 9; value >= 1; value -= 1) delay(50);

}

� Display the light level (self-calibrated) on the RGB LED array.
This should be just as super-easy for you and, this time, the end result really will look fantastically cool!

5 Challenge
The colours (green, yellow, red) of the ten segments are fixed by the background() function. Remove this limitation by
making a flexible RGB LED system. Here are the steps, and parts, that you might need to achieve that. (If you succeed then
you will have a very useful and general facility that you can reuse in many of your own projects whenever a colourful bar graph
display is needed.)

6

5 CHALLENGE

5.1 Use an array to specify the segment colours
An array is a collection of identical variables that are accessed by a numeric index (instead of giving each one of them a unique
name). For example, if you have three integer variables

int x, y, z;

then you could replace them with a single array called ‘a’ holding three integers

int a[3]; // element-type array-name [number-of-elements]

and then make the following substitutions in your program: x→a[0], y→a[1], z→a[2]. Your program’s behaviour will
be exactly the same. The advantage of the individual int variables is that they can each be given a meaningful name, which
makes your program easier to read and understand (and type, probably). The advantage of the array is that a particular int
element of interest within the array a can be specified using another variable; for example, if i is an integer between 0 and 2,
then ‘a[i]’ refers to the ith element of the array a. (This is called indirect addressing and is an important and fundamental
idea in programming.)

To describe the colours in our ten-segment bar graph we could use a ten-element array of ints.

int ledColours[10];

Just like a normal variable, an array can be initialised when it is created. Follow the name with an assignment ‘=’ and then a
list of initial values between curly braces and separated by commas. Like this:

int ledColours[10] = { 2, 2, 2, 2, 2, 2, 3, 3, 3, 1 }; // six greens, three yellows, one red

If it is not immediately obvious what is going on here, compare the colour numbers in this array with the calculation of colour
in the background function:

int colour = 2; // green for segments 0, 1, 2, 3, 4, 5
if (segment >= 6) colour= 3; // yellow for segments 6, 7, 8
if (segment >= 9) colour= 1; // red for segment 9

Note also that the indices in the ledColours array correspond exactly to segment numbers. In other words, these three lines
in background can be replaced by a single line that fetches the required colour out of the array.

int colour = ledColours[segment];

� Modify your program as described above and verify that it works correctly.

5.2 Marching colours
The following loop sets up all eight possible colours on the ten segments (with black and red repeated, because colours 8 and
9 are the same as colours 0 and 1 when you are only looking at the rightmost three bits).

void loop(void) {
for (int i= 0; i <= 9; ++i)
ledColours[i] = i; // set the colours of each segment to be the same as its index

}

� Modify this loop() so that it displays ‘marching colours’.
‘Marching colours’ are colours that appear to move along the entire length of the bar graph, stepping to the next segment every
(say) 500ms.

t

5.3 Improve performance
Instead of digitalWrite(), use the PORTD and PORTB registers to control pins 0 to 12.

5.4 [DIFFICULT] Mix the primary colours in different ratios
Use pulse-width modulation (PWM) to adjust the brightness of the red, green, and blue LEDs. For example, with 16 levels (4
bits) of PWM brightness for each individual LED, each segment could display 2048 (12 bits) different colours.

7

