
1 LED DISPLAYS

Microcontroller Systems and Interfacing
week 10 experimental lab

1 LED displays
Seven-segment displays contain seven (or eight, including the deci-
mal point) individual LEDs arranged in a pattern that is convenient
for displaying digits (and maybe some letters too).

Unlike bar graph arrays, but similarly to RGB LED arrays, each
LED in a seven-segment display shares one of its terminals with all
the other LEDs in the package. The shared terminal might be the
anode or the cathode, depending on the particular device. (Check
the data sheet for your device to find out which.) If all the anodes
are connected together the arrangement is called common anode; if
all the cathodes are connected together, the arrangement is called
common cathode.

A common cathode seven-segment display therefore requires at
least 8 pins (seven for the anodes, and a single pin for the shared
cathode connection). Most seven-segment displays also provide a
decimal point (the eighth LED), and an additional common connec-
tion, making a total of 10 pins.

A

B

C

D

E

F
G

DP

1

2

3

4

5

10

9

8

7

6

A B C D E F G DP

3,8

10 9 7 5 4 2 1 6

(-2V)

10mA

1.1 Seven-segment display circuit

� Set up a single seven-segment display on your breadboard.
Connect the seven segments as follows:

digital pin 2 → A segment
3 → B

. . .
8 → G

pin 9 → DP segment

Since each segment is a light-emitting diode (LED) you must use
the usual 330 Ω current-limiting series resistors.

330

330

330

330

330

330

330

330

A
T

m
eg

a3
28

D2

D3

D4

D5

D6

D7

D8

D9

GND

A

B

C

D

E

F

G

DP GND

7-segment
display

10

9

7

5

4

2

1

6 3

GND
8

1



2 USING A SEVEN-SEGMENT DISPLAY TO SHOW DIGITS

1.2 Seven-segment display software

� Create a program to drive the seven-segment display.
If you do not want to create one from nothing, make a copy of an earlier program for an LED array to use as a starting point.
Controlling a 7-segment display is not too different.

Test your seven-segment display in some way. (For example, make your loop() count in binary on the display’s segments,
or make it turns on each segment one at a time. Anything with a predictable result, that you can verify visually, is OK.)

2 Using a seven-segment display to show digits
To display a digit we have to turn on the seg-
ments in an appropriate pattern. For exam-
ple, the digit 0 will be displayed if segments
A, B, C, D, E, and F are turned on, corre-
sponding to digital pins 2, 3, 4, 5, 6 and 7
being HIGH, and pins 8 and 9 being LOW.
We can set these pins to their required states
in parallel using ‘setLEDs(0b00111111)’.
(Your setLEDs() function from recent labs
will work for this with little (or no) modifica-
tion.)

2.1 Designing the digits

� Complete the table on the right to plan the pattern
of segments that need to be lit for each of the
ten decimal digits, and derive the corresponding
argument to setLEDs():

1. Design a pattern of segments corresponding
to the digits 1 to 8. Using a pencil, fill in the
empty segments in the example displays to
visualise your requirements.

2. Convert your patterns to the corresponding H
(high) and L (low) values for each segment.

3. Finally, convert the H and L values for each
segment into a series of 1 and 0 bits. The
equivalent integer value is the numeric
argument for setLEDs() that will display
the digit.

segment segments setLEDs()
digit pattern G F E D C B A argument

0
A

B

C
D

E

F
G

DP

L H H H H H H 0b0111111 = 63

1
A

B

C
D

E

F
G

DP

2
A

B

C
D

E

F
G

DP

3
A

B

C
D

E

F
G

DP

4
A

B

C
D

E

F
G

DP

5
A

B

C
D

E

F
G

DP

6
A

B

C
D

E

F
G

DP

7
A

B

C
D

E

F
G

DP

8
A

B

C
D

E

F
G

DP

9
A

B

C
D

E

F
G

DP

H H L H H H H 0b1101111 = 111

2.2 Displaying the digits
Displaying a digit requires a call to setLEDs() with an argument corresponding to the pattern of segments that should be on
to form the digit we want to display.

� Write a function displayDigit(digit) that calls setLEDs() with the correct parameter for the given digit.
A series of if() statements can test the value of digit and call
setLEDs() with the corresponding parameter.

void displayDigit(int digit) {
if (0 == digit) setLEDs(0b0111111);
...
if (9 == digit) setLEDs(0b1101111);

}

� Test your function with the loop() shown on the right. int counter = 0;

void loop() {
displayDigit2(counter++);
delay(200);

}

2



4 CHALLENGES

2.3 Show useful information on your seven-segment display.
Choose and complete at least one of these three examples of showing useful information on your 7-segment display.

� Use analogRead() and map() to convert a potentiometer position into a numeric display between 0 and 9.

� Display the ambient light level as number between 0 and 9. (Don’t forget to make it self-calibrating.)

� Make a light-triggered counter.
Hint: for this to work well you will need to use both self-calibration and hysteresis. Consider an object absent if the light level is
above (e.g.) 60%. Consider an object present if the light level is below (e.g.) 40%. Make your loop() code detect a transition
from ‘absent’ to ‘present’ and at that time increase the value shown on the display by 1.

Important note
Leave you seven-segment display circuit on the breadboard. You will need it to complete the lab experiments next week.

3 Mini project
Design some seven-segment patterns for letters. Supporting the entire alphabet is difficult with only seven segments, but if you
design patterns for the letters A to F then you can display 4-bit numbers as a digit 0, ..., 9, A, ..., F. Use the templates below to
design as many additional characters as you want, then add them to your displayDigit() function.

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

A
B

C
D

E

F
G

DP

4 Challenges

� Improve your displayDigit() function.
There are several ways to write this function. The suggestion above, using if
statements, is not the most efficient. It would be better to store the setLEDs()
parameters in an array of integers. Index the array using the digit to obtain
the parameter to use with setLEDs().

int ledValues[10] = {
0b0111111, // 0
...
0b1101111 // 9

};

void displayDigit(int digit) {
setLEDs(ledValues[digit % 10]);

}

� Modify your setLEDs() function to use the PORTD and PORTB registers directly to set the output pins to HIGH or LOW.

� Add a second seven-segment display to your circuit.
Use it to make a counter from 00 to 99. Use it to display a percentage light level or potentiometer value. Use it to display the
temperature in degrees Celsius.

� If you did not already do so, figure out how to add the second seven-segment display to your circuit using only 10 digital
outputs instead of the 16 that the obvious approach requires.

� Eight series resistors are required so that eight segments can be lit at the same time without them ‘stealing’ current from each
other. How could you modify the overall system so that only one series resistor is shared between all the segments?

3


