
1 DIGITAL INPUT

Microcontroller Systems and Interfacing
week 11 experimental lab

1 Digital input
We cannot simply connect a switch to a digital input pin. Just like with analogue inputs, we have to generate a voltage that the
digital input can recognise as HIGH or LOW. The usual way to do this is with a pull-up resistor and a switch:

When the switch is open (not conducting) the resistor connects the digital input
to 5V and reading the input will produce HIGH. The digital input has a very high
resistance, and so almost no current will flow.

When the switch is closed (conducting) it connects the digital input to GND
and reading the input will produce LOW. In this case, the resistor limits the amount
of current that will flow from 5V to GND.

Typical values for the pull-up resistor are between 10k Ω and 100k Ω. For ex-
ample, if we were to use use 47k Ω, a standard value in the middle of the range,
then we can use Ohm’s law to calculate that 5 V/47000 Ω ≈ 0.1 mA will flow from
5V to GND when the switch is closed.

digital HIGH

GND 5V47k
switch open

5V

digital LOW

GND 5V47k
switch closed

0.1 mA

0V

Let’s add two switches to our circuit and use them to control an up/down counter. The current value of the counter (a single
digit) will be displayed on the seven-segment display. (If you prefer, you can make a single ‘dot’ move up and down a LED bar
graph display instead.)

� Add two switches to a circuit and make them do something.

Extend your seven-segment (or LED bar graph) display circuit with two switches, including a pull-up resistor
for each. Connect your switches to digital pins 2 and 3 of the microcontroller and configure those pins as
INPUTs. (If you have to move your seven-segment display connections to different pins, remember to update
your program accordingly.)

A

B

C

D

E

F

G

DP GND

7-segment
display

ATmega328

D2

D3

D4

D5

D6

D7

D8

D9

GND

D12

D11

GND

5V

47
k

47
k

330

330

330

330

330

330

330

330

10

9

7

5

4

2

1

6 3

GND
8

The simplest way to make the switches affect a counter is to continuously incre-
ment (or decrement) the counter while one (or other) of the buttons is pressed. To
recognise when a button is pressed, check if the corresponding digital input is LOW.
Make one of the buttons increment the counter and the other button decrement the
counter.

You should avoid asking for a digit larger than 9. One way to do this is to take
the value of the counter modulo 10, using the ‘%’ operator (which is like division,
except that it gives you the remainder instead of the quotient).

int counter = 15000;

void loop() {
if (digitalRead(3) == LOW)
counter = counter + 1;

displayDigit(counter % 10);
delay(100);

}

� Make the counter change just once each time a switch is pressed.

To make the switches affect a counter once you want to recognise
a transition from the switch being open to the switch being closed.
This means the digital input changing from a HIGH level to a LOW
level.

Hint: start with just one of the pins. When that one works,
duplicate the code and modify it to manage the other switch.

int oldState = HIGH;

void loop() {
int newState = digitalRead(3);
if (oldState == HIGH && newState == LOW) {
counter = counter + 1;
displayDigit(counter % 10);

}
}

1



3 SOFTWARE DEBOUNCING

You will need a variable outside of loop() to remember the oldState of the switch. Each time loop() runs, read
the newState of the switch. If the oldState was HIGH and the newState is LOW then the switch must just have been
pressed. If the switch was pressed, update counter accordingly and display its new value using displayDigit(). In all
cases you should store the newState of the switch into oldState at the end of loop().

Hint: when it is time to duplicate the code for the other switch, think very carefully about which variables should have two
versions (one version for the ‘up’ switch and the other version for the ‘down’ switch) to prevent the switches from interfering
with each other.

? Do you notice any strange behaviour when you press the switches? If you do, think about what is happening inside the switch.
Hint: I deliberately chose cheap switches so that their construction would be the simplest it possibly could be.

2 Hardware Debouncing
Your switch is bouncing.

� Cure the switch bounce using a small capacitor.
The capacitor will discharge instantly when the switch is
closed, but will need several milliseconds to charge up again
when the switch is opened. While charging, the value on the
digital pin will remain LOW until the capacitor is almost fully
charged at which time the pin will change to HIGH.

Begin with the largest value of capacitor you have, about 100 nF. (It is marked ‘104’.) Then try successively smaller values
until the switch starts to bounce again. (If you have very small capacitors then use a small 1-row wire link to connect one lead
of the capacitor to ground, without stressing it by bending the leads, as shown in the diagram.)

3 Software debouncing
One reason microcontrollers are so useful is that they let us ‘move’ hardware into software. Try to debounce the switch in
software, instead of in hardware.

A simple approach to debouncing is to introduce a short delay, to allow the switch to finish bouncing, before letting the
program proceed.

� Remove the debouncing capacitor(s) from your circuit.

� Modify your program to implement the following debouncing strategy:
• if the input pin is HIGH then do nothing (the switch is not pressed)
• otherwise, the input pin is LOW:

– perform the associated action (increment or decrement the counter),
– wait for a short time (using the delay() function) to let the switch ‘settle’,

if (digitalRead(3) == LOW) {
counter = counter + 1;
delay(100);

}

Increase the delay until the switch no longer bounces when you press it.

? Does the switch still sometimes bounce when you release it? Why?
The contacts sometimes ‘bounce back’ when the switch is released, causing unwanted ‘phantom presses’ of the switch. One
way to cure this is to wait for the switch to become HIGH again, then delay again, before continuing. The strategy now looks
like this:

• if the input pin is HIGH then do nothing (the switch is not pressed)
• otherwise, the input pin is LOW:

– perform the associated action (increment or decrement the counter),
– wait for a short time (using the delay() function) to let the switch

‘settle’,
– use a while loop to wait for the input pin to return to HIGH.
– wait for a short time (using the delay() function) to let the switch

‘settle’,

if (digitalRead(3) == LOW) {
counter = counter + 1;
delay(100);
while (digitalRead(3) == LOW)
; // do nothing

delay(100);
}

? What are the disadvantages of this debouncing mechanism?

? What happens if you try to operate both switches rapidly, at the same time?

2



4 CHALLENGES

4 Challenges

4.1 Eliminate the external pull-up resistors
Pull-up resistors are so useful that the microcontroller provides them internally. To enable an internal pull-up resistor, configure
the pin as INPUT PULLUP. Once configured like this you can remove the two external 47 kΩ pull-up resistors.

4.2 Debouncing with a timer: simulating hardware debouncing in software
Software debouncing, as described above, is not ideal. A slightly better solution is to simulate the capacitor circuit in software,
using a timer. To implement a timer we can use the millis() function, which returns the number of milliseconds for which
the program has been running.

By remembering the millisecond time at which each switch was last pressed, it is easy to simulate a capacitor ‘discharging’
and ‘charging’. If the program is written correctly, there is no need for a dedicated while loop and both switches can be
operated simultaneously.

You will need two variables, of type long, to hold the ‘last-pressed’ time for each button. Your loop() function can
simulate a capacitor discharging and recharging for each button, for example:

• if the button input is HIGH, do nothing
• if the button input is LOW, the button is pressed (or bouncing during a press or release)

– if the button’s ‘last-pressed’ time is more than T milliseconds ago
∗ the button has been stably release for a while, so...
∗ perform the action (increment or decrement the counter)

– set the button’s ‘last-pressed’ time to the current time
∗ this simulates the capacitor being completely discharged at this instant in time

� Modify your program to debounce using a timer.

Experiment with different values of T until you find a completely reliable value. Demonstrate that while one button is held
down the other button continues to work normally.

4.3 Use interrupts to manage the buttons
If our loop() has a repetitive task to perform then trying to handle switches and other asynchronous input at the same time
can be inconvenient. Just like all computers, the microcontroller provides interrupts for handling asynchronous events (such
as an input pin changing state) outside the normal cycle of repetitive tasks. We can use interupts associated with digital input
pins 2 and 3 to process our switch inputs asynchronously.

� Prepare your circuit and program to use interrupts.
If you have not already done so, move the seven-segment display to pins 4 through 11 and move the two button inputs to pins 2
and 3. Verify that your program still works.

� Make your counter variable ‘interrupt-safe’.
Declare counter it to be volatile. (Declaring it volatile warns the compiler that its value might change without
warning, during an interrupt.)

� Attach the buttons to the interrupts.
Write an interrupt service routine (interrupt handler) called buttonDownISR() that decrements the counter. Modify your
setup() function so that it runs buttonDownISR() whenever the associated button is pressed. For example, if pin 2 is
connected to the ‘down’ button:

attachInterrupt(digitalPinToInterrupt(2), buttonDownISR, FALLING);

Write a similar handler called buttonUpISR() that increments the counter and then in setup() associate it with the
other button by calling attachInterrupt() with the appropriate parameters.

� Modify your program so that the loop() function only does one thing: displays the current value of your counter on the
seven-segment display.

� Test your program to make sure it works.

4.4 Debounce the buttons in your interrupt-based program
The interrupt-driven version again suffers from bouncing. Cure this by implementing the same millis()-based filter in your
interrupt routines.

Your switches may still bounce on release. Cure this using a periodic TimerOne interrupt that resets the last-pressed time
for each button every 10 ms as long as the corresponding input pin is LOW.

3



A CAPACITORS

Microcontroller Systems and Interfacing
week 11 reference material

A Capacitors
A capacitor is a two-terminal device that stores electrical
charge. When it is ‘empty’ it has a very low resistance to cur-
rent, and allows a large current to flow into it. As it ‘fills up’
the resistance increases, and the current decreases. Eventually
the capacitor is full and the current flowing into it decreases
to zero, effectively giving it an infinitely large resistance.

When placed in a circuit with a resistor, the capacitor be-
haves like a low-value resistor that gradually increases in re-
sistance as charge flows into it. Considering the two compo-
nents as a voltage divider, this means the voltage across the
capacitor begins at zero (R � RC) and rises until it equals
the supply voltage (R� RC).

The current flowing into the capacitor, and hence the rate
at which it accumulates charge and increases its voltage, is
proportional to the voltage across its terminals. Therefore the
rate of charging decreases as the amount of charge increases.
This leads to an initial rapid increase in voltage that gradu-
ally slows as more and more charge is accumulated (and the
voltage in the device increases, and the current flowing into it
decreases).

The time constant of a resistor-capacitor series circuit, τ
(Greek letter ‘tau’), is equal to the product of the resistor and
capacitor values. The time constant indicates how long it will
take for the capacitor to charge to 63% of its capacity (and
hence to 63% of the supply voltage). Multiplying τ by various
values tells us useful information about the time taken to reach
various conditions:

R× C × . . . condition reached

τ × 0.7 50% of final voltage
τ × 1.0 63% of final voltage
τ × 4.0 98% of final voltage

R C

5V GND

IC

VC

Examples of capacitor applications include timing (for oscillators, timers, switch debouncing circuits), blocking DC voltage
while allowing AC signals to pass (in series connection), and stabilising voltage against short-term fluctuations (in parallel
connection).

A.1 Capacitor values and markings
Capacitance is measured in Farads (after the physicist Michael Faraday). Typical capacitor values fall in the picofarad
(1 pF = 10−12 F), nanofarad (1 nF = 10−9 F) and microfarad (1µF = 10−6 F) ranges.

Capacitors are either marked with their value directly, or (similarly to resistors) are marked with three digits indicating a
two-digit value and an exponent giving the value in pF.

Larger values (more than a few µF) are often polarised, and will have the positive and negative terminals marked (and
possibly have a positive lead that is longer than the negative, like LEDs). Unlike LEDs, connecting a polarised capacitor the
wrong way round is very damgerous and can lead to explosive failure of the device.

2200µF
polarised

100 nF
(10 × 104 pF)

+ −

marking value
101 100 pF 100 pF
222 2200 pF 2.2 nF
103 10000 pF 10 nF
104 100000 pF 100 nF

4


