K U . S 1 SERIAL PERIPHERAL INTERFACE (SPI) HARDWARE

vvvvvvvvvvvvvvvvvvvvvv

Microcontroller Systems and Interfacing

week 13 experimental lab

1 Serial Peripheral Interface (SPI) hardware

Complex devices (persistent memory and flash memory cards, D/A and A/D converters, real-time clocks, etc.) often have serial
connections instead of parallel. They behave a little like a shift register, exchanging parallel information using one or two serial
data signals and a clock. The two most common protocols are Inter-Integrated Circuit (I?C) and Serial Peripheral Interface
(SPI). The simpler (and in many ways the more flexible) of the two is SPI.

|/
1.1 External ADC: MCP3204 cHog1 = 14H Vo
CH1O2 = 130 VRrer
To understand how SPI works, let’s increase the resolution of our analogue input by CH2O3 ¢ 120 AGND
connecting an external analogue-to-digital converter and communicating with it using g v)
. L . . : CH3O4 5 1MHOCLK
SPI. A popular device for this is the MCP3204 which has four independent 12-bit o
NC 5 10 Doyt
ADC channels. o
NCOes + 90O Din
Vpp (pin 14) 5V power supply DGND O 7 81 CS/SHDN
DGND (pin 7) 0V digital ground
AGND (pin 12) 0V analogue ground
. . . . (\
VRrer (pin 13) reference voltage, sets the upper limit of in- 5v Voo Vrer 1ok
put voltage (corresponding to the maximum digital serial clock
A/D output value) S (13) P S a0
master in, slave out
CHO-3 (pins 1-4) the four analogue input channels M SO (12) MSO CHL frroeeeee
master out, slave in
CLK (pin 11) SPI serial clock input MOSI (1) MOSIE - CH2 oo
slave select A= ~nl....
Din (pin 9) SPI serial data input (equivalent to MOSI) SS (10) (active low) q ss as
Dout (pin 10) SPI serial data output (equivalent to MISO) Arduino DAND - AGND
CS (pin 8) SPI active-low chip select (equivalent to SS) | G\D \ MCP3204)
» Connect a MCP3204 ADC to the microcontroller. Use the following digital pins to carry the SPI signals:
SPL/Ar.dumo MCP32(£ \ Put any
SS pin10 - pin8 CS analogue

MOSI pin 11 — pin9 Dy
MISO pin 12 — pin 10 Doyt
SCK pin 13 — pin 11 CLK

sources that
you want here.
These are

only some
suggestions.

Be very careful to connect
the MCP3204 the correct way
around. Like the shift register,
if the power is connected back-
wards the device will be dam-
aged.

» Create a test voltage using a po-
tentiometer (or a sensor of your
choice) and connect it to the first
input, CHO.

ATMEGA328

K U \ S 2 SPI COMMUNICATION SOFTWARE

»»»»»»»»

2 SPI communication software

Some microcontrollers (including the Arduino) provide SPI support in hardware. Access to the hardware’s SPI signals is made
available through a library. Other microcontrollers do not include harware SPI support, and communicating with SPI devices
requires manual control of all four SPI signals. We will use both methods to communicate with the MCP3204.

2.1 Using the SPI library

To use a library, it is sufficient to include the associated header file at the beginning of the program. We will use the SPI library
to quickly test our hardware.

» Create a new sketch. Make the SPI library available by in- #include <SPI.h>
cluding SPTI.h at the beginning.

The SPI library manages the CLK, MISO and MOSI signals for us. It does not manage the slave select signal, so we will do
that ourselves.

» Create a definition (using #define or const int to as- const int SSN = 10; // slave select
sociate the symbol SSN (‘slave select, active-low’) with pin
number 10.

» Create a setup () function that performs the following ini- void setup() {

tialisation steps: Serial.begin(9600);
pinMode (SSN, OUTPUT) ;
1. Start the Serial interface at 9600 baud. digitalWrite (SSN, HIGH); // device inactive

SPI.begin();

SPI.setClockDivider (SPI_CLOCK_DIV16); // 1MHz
SPI.setDataMode (SPI_MODEO); // low, rising
SPI.setBitOrder (MSBFIRST) ;

2. Configure the SSN pin as an OUTPUT, and set its value
to inactive.

3. Start the SPI interface using a clock divider of 4, SPI
mode 0,0, and transfers with most significant bit first.)

» Create a function int readADC (unsigned char channel) that reads and returns a value from the given ADC
channel. To read from the ADC using SPI, you will have to do the following steps:

1. Enable the ADC by setting SSN active.

2. Use SPI.transfer () to send (and receive) three bytes from the ADC. The first byte contains five zeros, a start bit 1,
and mode bit 1 (single-ended conversion), and the most significant bit of the three-bit channel number. The second byte
contains the least significant two bits of the channel number, followed by 6 zeros. The third byte can contain anything.

3. Collect the values returned by the second and third calls to SPI.transfer (). The least significant four bits of the
first value are the four most significant bits of the ADC result. The second value contains the eight least significant bits
of the result. Recombine them into a 12-bit result.

4. Turn off the ADC by setting SSN inactive.

5. Return the result from the ADC.

int readADC (unsigned char channel)
{
digitalWrite (SSN, LOW);
int adval = 0O;
SPI.transfer (0b00000110 + ((channel >> 2) & 1));
adval = ((unsigned char)SPI.transfer (channel << 6) & 0b00001111) << 8;
adval |= ((unsigned char)SPI.transfer(0));
digitalWrite (SSN, HIGH);
return adval;

» Test your sketch with a 1oop () that prints the results of read- void loop ()
ing channel 0, then pauses for a quarter of a second. (Don’t { 1 orinel 0
forget to open the serial monitor to view the output generated Serial.println(readADC(0));

by the sketch.) } delay (250);

KU \ S 3 CHALLENGES

2.2 Implementing SPI manually

Let’s simulate what would be needed on a microcontroller that does not have SPI hardware or a library giving access to it. This
involves driving the SPI slave select, clock and data signals directly using digitalWrite (). (This technique is informally
known as ‘bit banging’ the interface.)

» Save your sketch from the previous section under a new name. We are going to remove all references to the SPI library and
generate the necessary SPI signals explicitly.

» Delete the #include <SPI.h> from the beginning of the sketch.
» Keep the defintion for SSN. Add three more definitions for MOST (pin 11), MISO (pin 12), and SCK (pin 13).

» In setup (), delete the four lines that configure the SPT library. Replace them with code that performs the following actions:

1. Configure MOSI as an OUTPUT.
2. Configure MISO as an INPUT.
3. Configure SCK as an OUPUT and set it to idle (LOW).

» Implement a function void sendBit (int value) that writes the least significant bits of value to the SPI device. You
will have to perform two steps to do this:
1. Write (using digitalWrite ()) the least significant bit (only) of value to MOSI.
2. Generate a positive pulse on SCK by setting it HIGH then back to LOW.

» Implement a function int recvBit (void) that reads one bit from the SPI device. You will have to perform four steps to
do this:
1. Set SCK active (HIGH) to ensure data is available on MISO.
2. Use digitalRead () to obtain the value (0 or 1) of MISO.
3. Set SCK inactive (LOW) to end the clock cycle.
4. Return the bit that was read from MISO.

» Delete the three lines in readADC () that refer to SPI.transfer (). Replace them with code that explicitly initiates a
conversion. (Refer to the timing diagram in Appendix B.) Your code will perform the following steps:

1. Use sendBit () tosend a 1 (start bit) followed by another 1 (single-ended mode) to the ADC. (We do not need to send
the initial 5 zeros that were necessary when using the byte-oriented SPI library.)

2. Use sendBit () to write the least significant three bits of channel to the ADC.

3. Use sendBit () to write two ‘don’t care’ bits to the ADC.

4. Use recvBit () toread 12 bits from the ADC. For each bit read you will have to shift adval one bit left, then add to
it the bit read from the ADC. At the end of this you will have reconstructed the 12 bits of ADC result.

5. Return the final value of adval.

Test your code. (You can leave the original 1oop () unmodified.)

3 Challenges

» Modify loop () (in either of your sketches) to display the values of all four ADC channels. Connect one or more voltage
sources to the other ADC input channels and verify that the sketch prints the correct results.

» Disable (comment out) the Serial.println () and delay () from loop () in your two sketches. Modify loop to per-
form many conversions (call readADC () many times). Use mil1lis () to record the time before and after performing the
conversions. Calculate how many conversions per second are being peformed.

SPI library conversions per second: Manual SPI conversions per second:

» Connect a MCP4822 digital-to-analogue converter (DAC) and use it to generate a sine wave. (See the appendix for the relevant
parts of the data sheet.) Note: Vpp must be connected to 5V and Vss must be connected to GND. Be very careful to get this
right! To check the sine wave, connect the DAC output to an ADC input channel and display the results on the serial plotter.
Note that you can share the SCK and MOSI signals between the ADC and the DAC but you will need two SPI protocols, two
different ‘slave select’ pins (one for the ADC and a new one for the DAC), and a new LDAC signal for the DAC.

3

K U \ S A SERIAL COMMUNICATION

Microcontroller Systems and Interfacing
week 13 reference material

A Serial communication

A shift register can convert a single serial data signal (containing a fixed-length ‘message’ sequence of IV single bits) and
corresponding clock signal into NV parallel signals. We can generalise this very simple protocol in several ways:

e connect the serial signal to more than one external converter device,
e send information in both directions (from microcontroller to device, or from device back to microcontroller),
e use variable-length ‘message’ sequences, etc.

Two popular general protocols are the Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I°C). Both are ‘in-
system’ protocols, meant for communication between components within a single piece of equipment.

Useful devices that use these protocols include Electrically-Erasable Programmable Read-Only Memory (EEPROM),
Analog-to-Digital Converter (ADC), Digital-to-Analog Converter (DAC), real-time clocks (RTC), various sensors, Liquid Crys-
tal Display (LCD) controllers, Secure Digital (SD) memory cards, the SM (system management) bus on Intel motherboards, etc.

A.1 Inter-Integrated Circuit (I°C)

I2C was developed in 1982 by Philips Semiconductor to enable communication between digital devices in television sets.

I2C is a bus-based protocol. Up to 127 devices can be connected to the bus, each having a unique 7-bit address. Devices
communicate by exchanging byte-oriented messages with each other. I°C therefore creates a ‘mini network’, in which senders
and receivers are chosen dynamically according to a relatively complex protocol.

An I2C bus needs just two wires: serial data SDA and serial clock SCL. The bus can be in one of two states, active or idle.
When idle, both SDA and SCL are high, and no communication is taking place. When the bus is active, the clock cycles from
high to low and back again while serial communication takes place on SDA. During a clock cycle, SDA is permitted to change
only when SCL is low and must remain stable (for the receiver to sample) when SCL is high.

Any device can initiate a message send by (temporarily) claiming ownership of the I°C bus while the bus is idle. Ownership
is claimed by generating a falling edge on SDA while SCL is high, a condition that should never occur while the bus is active.

serial clock SCL ~ pus | bus LT LT LT 1.

serial data SDA — ige L claimed [T e Y ws |

For the duration of the message exchange, the device that initiates the exchange is called the master and the device respond-
ing to the message is the slave. The master controls SCL throughout the message exchange. At various times during a message
exchange, one of these devices is the transmitter and the other is the receiver. The transmitter controls SDA, regardless of which
device is the master.

Every byte transmitted is followed by a single-bit acknowledgement from the destination device. Nine bits of data are
therefore exchanged for each byte of data transmitted, with the receiver controlling the final acknowledgement bit.

serial clockSCL .. LI L1 L[LI LT LT 11T LT L_.
transmitter SDA ~~ (ot otz J__ots J_ bis {5 Y b6 f oz J_ bis) -

receiver SDA ~ L ack [~

At the end of data transfer, the master releases the bus by generating a rising edge on SDA while SCL is high, which (again)
is a condition that never occurs while the bus is active.

serial clock SCL WS idle
transmitter SDA Y57 Yo Y (ack) \Qus[T

release

Each message begins with the master transmitting a byte containing seven address bits and one R/W “direction’ bit. The
direction bit indicates if the master is writing to the slave or reading from it. The slave sends back a single bit acknowledging
the receipt of the message. Master and slave then exchange an arbitrary number of data bytes, in the direction specified by the
direction bit.

SDA L (bus claim)
seven-bit slave address R/W ack | 1x slave address and direction byte
eight data bits ack | INx data bytes
SDA _I (bus release)

A

SERIAL COMMUNICATION

»»»»»»»»

I2C permits two devices to communicate with each other in both directions, but only in one direction at a time (for a given
message). It is therefore a half-duplex protocol. 12C has relatively low performance, with typical maximum clock speeds of
100 kHz or 400 kHz. 1t is particularly good for configuring and monitoring devices that have control registers and/or status

registers.

A.2 Serial Peripheral Interface (SPI)

SPI was developed by Motorola in 1985 for communication between a mi-
crocontroller (originally the M68HC11) and its external devices.

SPI is a point-to-point protocol. It connects a single master device to
one or more slave devices. The slave devices have no address, but each one
has an active-low ‘slave select’ (SS) input. When SS is inactive (high), the
slave device ignores its other SPI input signals and disables its SPI output (by
making it high-impedance). This allows several slaves to share a single SPI
connection, but only one of them can be active at a given time. The lack of
addressing makes SPI a relatively simple protocol.

master slave
))
serial clock
SCK > SCK
VoS! master out, slave in VoS!
M SO master in, slave out M SO
= slavg select =
(active low)
N—— ———

SPI needs four wires: an active-low slave select SS, a serial clock SCK and two uni-directional data signals, master-
out/slave-in MOSI and master-in/slave-out MISO. Several different conventions are possible for clocking, but the most usual is
‘mode 0,0’ in which the clock idles low (polarity 0) and received data signals are sampled on the leading (positive) edge of the

clock signal (phase 0).

phase 0 = leading edge SPI clock mode | clock active
serial clock SCK .. [TLI LI LI LI polarity 0 =idle low (phase,polarity) | idles edge
slave select SS ~ 7\ [0,0 low leading (rising) _f1
master our MOS! IR — = so il 0,1 low trailing (falling) 1
. 1,0 high leading (falling) 1
master in MISO - -~—@msol_)L~)L~ b M 1.1 high trailing (rising) LI

When using multiple slaves, each slave requires its own separate SS signal. SPI therefore requires 3 + N wires to commu-

nicate with NV slave devices.

master
S
ScK serial clock
VoS! master out, slave in
M SO master in, slave out
S0 p——
slave 0 slave 1 slave 2 slave 3
SST p——— S N T)
§82 p——m b sCK b sCK —p> scK —p> scK
S8 p——— MOSI MOSI MOSI MOSI
~— M SO M SO M SO M SO
L +»d SS —d S5 —q S5 —q S5
slave selects ~— ~— ~——— ~——
If N is large then the number of outputs required to generate the SS sig- ———
nals can be reduced using a serial to parallel converter (shift register) or a ok | _serial clock
binary decoder. (A binary decoder has IV inputs, representing a N-bit bi- .
R N B . . . NS master out, slave in
nary numeric value, and 2" outputs of which only one is active at any time,
selected according to the numeric value of the input number. It effectively MO |emasterin slave out
converts a [N-bit ‘address’ into NV individual ‘chip select’ signals.) slave number slave selects
SPI permits the master and slave to exchange information in both direc- Do N, 550
tions at the same time. It is therefore a full-duplex protocol. SPI has relatively _ —
) DL Ny 1 Ss1
high performance, with typical maximum clock frequencies of 20-30 MHz
. . I . . N = b~
(fast enough to transmit high-definition multi-channel audio, for example). Nto2 2 S82
It is particularly good for transferring streams of data, for example between gg'cfger 3 =
—

a microcontroller and an external analogue-to-digital or digital-to-analogue
converter.

K U ? S B MCP3204: 4-CHANNEL 12-BIT A/D CONVERTER WITH SPI

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

B MCP3204: 4-channel 12-bit A/D converter with SPI

The 10-bit ADC on the Arduino can be too limited for some applications. Increasing the resolution to 12 bits is easy using an
external ADC. (Higher resolution ADCs are available, but beyond 14 bits or so it becomes quite difficult to design and build
circuits with low enough noise to make the extra bits useful.)

A popular device is the MCP3204, containing 4 separate 12-bit A/D converters. The maximum clock frequency is 2 MHz,
or a maximum conversion rate of approximately 100,000 samples per second.

Vpp 5V power supply

cHoO1 ™~ 14\ Vvpp
DGND 0V digital ground CH1O2 = 130 Vger
CH2O03 ¢ 121 AGND
AGND 0V analogue ground chags 8 11[1CLK
Vger reference voltage, sets the upper limit of input voltage (corresponding to the NCO5 B 100 Doyr
maximum digital A/D output value) NCOe ™ 90Dy
CHO-CH4 the four analogue input channels DGND 07 8|1 CS/SHDN

CLK SPI serial clock input
Din SPI serial data input (equivalent to MOSI)
Doyt SPI serial data output (equivalent to MISO)
CS SPI active-low chip select (equivalent to SS)

To perform an A/D conversion, the number of the channel to be read is clocked into the device via MOSI as a five-bit
value: a single ‘start bit’ (high), a single bit to select single-ended or differential mode, followed by three bits of binary channel
number (for protocol compatibility with the MCP3208, which has eight input channels). The device then begins the requested
conversion. Two clock cycles later it provides the result of the conversion on MISO as a 13-bit value, as one leading zero bit
followed by the 12 result bits. The 12 bits of converted value are therefore sent back to the master device beginning three clock
cycles after the address has been supplied, or seven cycles after the start bit was written.

=] —

MCU latches data from A/D

converter on rising edges of SCLK
SCLK 11 12| |3] |4| |5 (6] |7| |8 ol g ([2 3 14 6 (17 21

Doaocockedoutofan 4 f 1+t 1t t 1ttt

Din Start D1
HI-Z NULL
Dour sir/eriero{as)esf 57 Yeojes)e+)es)ez)er)eo)

I\'/ACI}U Tran_srr?ifttfﬁq Data Séei‘trt
s ardogg e [0 of of of of 1 FRo2] [oi[oof X[x [X[x] x[x] [X[X][x[X]x][x]x]x]
MCU Received Data
Wignedwit g] 7] 7] 7] 7] 7] 7] 7] [2] 2] 2 [uer{sio oo s8] [57]pe[e5[ee] o] 62]o1e0]
I || | | |
Data stored into MCU receive Data stored into MCU receive Data stored into MCU receive
register after transmission of first register after transmission of register after transmission of last

X =“Don’t Care” Bits 8 bits second 8 bits 8 bits

When communicating over SPI one byte at a time (with the Arduino SPI library, for example) three bytes of data must
be exchanged to initiate the conversion and then read back the result. From sending the start bit to receiving the last bit of
converted result is a total of 19 clock cycles. Sending five zero bits before the start will therefore conveniently right-justify the
result in the last 12 bits of the 24 that are read back.

2-CHANNEL 12-BIT D/A CONVERTER WITH SPI

C MCP4822

KUAS

SCIENCE

RSITY of

KYOTO UNIV

2-channel 12-bit D/A converter with SPI

C MCP4822

Sl ebed-v6rzzzsa

‘ou| ABojouyos | diyoosdIN 0L0Z @

+(Qdp) ebeyon Ajddns syy ueyy
Jaybiy ob jouued jndino Bojeue Jya 8yl “(Xz 4o X|)
uondo uopoajes uieb ay) si 9 ateym FFp o 0} SSA
woly sI Indino Qyag 8y jo obuel sjess-ny 8yl
1ayiidwe ndino umo sy sey Indno yoe3 ‘uid jndino g
0ova ay st 81N0A pue ‘uid yndino v Ova ayy st YLNOA

(8LN0A VINOA) synding Bojeuy 9'¢

‘uid O/ NDIN UB SE YoNs 891ASP [01JUOD [eUIDIXD
ue Ag uaaup aq ueo uid siy] ‘uid SO auy jo abpa Buisu
ay) Je pasisap s ajepdn LNOA agy g1 (SSA) moj o) pi
aq ued uid siy] "syusjuod Ja)sibal Indul Jiey) yim awy
awes ay) je pajepdn ale 8LNOA pue YLNOA yjoq ‘moj
s1 uid siyy uaypn “(LNOA ‘sayoje| Indino) sisysibas Dva
Buipuodsa.i09 J1ay} 0 siaysiBas yoje| indul auyy Jajsues)
0} pasn si uid (induy uoneziuoiyouks Ova yolel) Ovat

(ovan) indu| ova yage G'€

‘uid yndui ejep |euss o|qredwod |dS 8yi st |dS
(1as) induj ejeq jewag p'¢

“uid 3ndur >o0j0 [eues 8|gqnedwod |dS 8yl S MOS
(M98) Indu| %20 |euss €€

*SUOIJoUN) BJEP PUE 3000 [eLISS S|(BUS 0} MOJ-OAI}oR
ue salinbas yoiym ‘uid Indur jpsjes diyp 8y sl S5

(sQ)pojes diyd z'e

‘pieoq

}InoJ1o 8y} jo aueld punosb Bojeue ue ulypm pajejosi
10 yped punoif Bojeue ayj 0} pai} q uid SSA sy} jeyy
papuawwosal Alybiy s)t (g0d) pieog Hnoul) pajuld
uoneoidde ayy ur s|qejieae si yjed punoib Bojeue ue
J| "uonoauuod souepadwi-mo| e ybnouyy sueid punoib
e 0} uid SSA 8y} J0BUUOD JSNW JasN 8Y| SIASP BYj} JO
yjed winjal Jua.ino sy pue uid punoib Bojeue ay) s SSA
‘spseoq uoneoljdde ul uasaid asiou

Kouanbay-ybly sjenuspe Jayuny O} PAPUBWILLIODDI
os|e s |9|jeted ul (wnjejuey) Joyoeded 4 Q| [euonippe
uy ‘punosb o} (olwessd) 4r Lo Inoge jo Joyoeded
ssedAq ejeudoidde ue asn 0} pspuswwodal S| }|
*aouewlopad Qyg poob e Joj ajqgissod se uesjo se aq
pinoys uid 99A sy je Ajddns semod 8y ‘AG'S O} AL'Z
woyy abues ued pue SSA 0} aanelal si abejjoa Alddns
ynduy ay] -uid induy abeyjon Aiddns aaisod ayy st Adp

(SSA '00p) suig aBeyjop Alddng 1°g

indino Yova VAo 8
901A9p 8y} UO A1Indud |8 Joj Julod 80UsI8je) pUNOID SSA i
indino fova 81N0p 9
(LNOA) sis)s1604 Indin0 BY) 0} (S1v3s1Bay Jnduy)
sBumes Qyq Jaysuel; o} pasn si uid siy | ‘indu| uolezIuoIYoUAS ovail [
Induj ejeq |eues 1as |4
ndu 500|9 [eLS MOS €
nduj j08j9s diyo) z
(AS'G 01 AL ') Indu] 8beyjon Aiddng 99 |
0I0S ‘didd 'dOSW
uonduasaqg Joquig
228v/218¥/208YdOIN

228Y/218Y/208YdOIN O 379V.L NOILONNL Nid ‘l-€ 31avl

‘L-¢ 9|qel ul pajsi| a1e suld ay) jo suonduosap sy

SNOILdIMOSAANId 0°€

¢e8y/c1L8Y/C08YdOIN

| ebed-v6vzzzsa

*ou| ABojouyos | diyoosoIN 0102 @

ova |enp ¥g-2| ‘2g8ydON
Jva enp ¥9-0} ‘2L8ydON
Ova [enp 319-8 :208¥dON

ovails| = [v]Ias

81N0A 9] m [€] X0s
SAlZ] % [2Z1s2

VLNOA [g] \7), 1] ddp

dOSHI ‘010S ‘diad uid-8
sadA] abeyoed

'sabexoed JOSI Pue O10S ‘didd

83U} Ul 8|qe|leA. B1e SBOIASP Z28Y/C|87/208YdON UL
‘pasinbal ae (Aypiwny pue ainssaid ‘ainyesadwa)

se yons) sjeubis Jo uojesuaduwiod Jo uonelqied aiaym
suoneolidde [elysnpul pue Jawnsuod Joj souewiopad
asiou mo| pue Aoeinooe ybly spinosd seoinep syl
(D.521+) abuel ainjesadwa)

popus)xe 8y} Jono payioads ale SedIAep 8sayL
awy Buipes isey pue jJusIe0d ainjeladwa) oujEW
oljes Mo| ‘Joud INQ Mo| Jo sabejueape juaseyul s)
yim ‘ainjosyiyole Buls aAlsisal B 9zi|in SedIASp YL
‘dn

-1omod a|gelja1 3INSUS 0} INJUID (YO d) 1958y UO-1amod
e ajelodioour osje seolnep asay] “uid OygT ay) Buisn
sjndino Oyg om} jo seyepdn snouoiyouAs Buimoje
‘sio)sibal palayng-s|qnop Spnjoul SIVIAGP By L
*(1ealdAy ‘U 00S) peo| Indino aoue)sisas ybiy umouy| e
jussald o} painblyuod s saydwe Jndino sy pue sbuies
J1amod Joj JJO pauIN} IE [SUUBYD UMOPINYS 8y} Ul SHNJIID
[EUJB)Ul BY} JO ISOW ‘BPOW UMOPINYS U] "siq JajsiBal
uoneinbyuo) sy Bumes Aq Ajjenpialpul spow umopinys
10 BAjoY Ul pajersdo g UED JauuBYd OYQ Yoel
“(z 40 1 Jo uteb) yq uondo uonos|eS UleD By} Bunjes

Aq \9B0'¥ 10 A8Y0'Z 89 0} 82IA8p U} Jo dBuel 8jeds-||ny
ay} aunbyuod ueo Jasn 8y (Agy0'z = 338)) eouslsjes
abejjon |eussyul uoisioaid ybly e eAey ssomep 8yl
“eoea)u| [eJayduad [eUSS

ajanedwod |ds yim Aiddns Ag'g o) ALz @jbuis e woy
ajelado seolnep a8y “AjpAnoadsal (sQyQ) SiepaAuo)
Bojeuy-o)-leybig ndino abejjon paseyng lg-z| pue
19-01 g8 [enp 8. SIDINSP ZZ8Y/ZL8Y/208VdOIN UL

uonduasaq

‘seouewIopad DQ/OV

Jejwis aAey ai1ay pajsy spnpoid a8yl | JJON

z 4 Z26vdON
z 0l Z16vdON
. z 8 206¥dON
| 4 1267dON
| ol LL67dON
| 8 106¥dON
z [4} 228vdON
z oL ZL8vdON
(A8¥02) 4 8 2087dON
[Bulsiul | 4" 128ydON
| ol 1187dON
| 8 108¥dON
43y
oueigmy | SOUUSUD | vommiosey |
abejjop

(1)SIoNpoId pajejay

$99IA9(UONESIUNWWOY [edRdQ JO UOnEIqIED
(pasamod-Aiapeq) uonejuawnisu| 9jqepod «
9ouaIajey abe)|0A B|qe}0sIeS UoISIDald -
uoneiqie) Josuag «

Buiwwiy 19sYO Jo julod 19S -

suoneoiddy

0,521+ 0} D,0- :9buey ainjesadwa) papusixy
uopesado Alddng-alBuIS AS'S 0} AL'Z
juaiole0) ainjesadwa) A 5 wdd og -
9ouaIajeY abe)|OA [BUIBIU| ABYO'Z -«

IndinQ ure xz Jo Ajun 9|qeios|es

st gy o swi Buipes isey

uid QvaT um

sOVA len@ 8y} Jo Buiyoje] snosue)nwIS
Hoddng %0010 ZHIN 0Z UiM oepBju| |dS
IndinQ 1ley-ok-jey -

0va indino obeyjoA 1g-ZL [end :2z8ydON «
0va indinQ abeyjoA 1g-0L 1ena :ZL8YdON «
Ova INdinQO abeyjoA 1g-g [ena :Z08YdON

sainjeaq

ddepidu] IS pue I 4 ewrdyuy Pim
19)19AU0)) So[euy-0)-[e3i(IndinQ d3e)[0A [enq NG-T1/01/8

¢Z8YICL8Y/C08YdIIN HIEIW

2-CHANNEL 12-BIT D/A CONVERTER WITH SPI

C MCP4822

KUAS

SCIENCE

KYOTO UNIVERSITY of

€z obed-v61222Sa

*ou| ABojouyss | diyoouIN 0102 ©

(OVa 119-8) 2085 ON 104 puBLILIOD BJIM -€-§ 34n9Id

‘ou| ABojouyoa] diyooIolN 0L0Z @ 2z ebed-y6vzzzsa

'SHQ ,2Jed JUOp, = X :3JON

1nop

oval

x I x §x { x foafrajzaYea{raysayea{za

Nansvol — Yeny ias

siq elep z4
(0°0 @pow)

(11 @pon)

cl L oL 6

Sl vl €L

s)q Blyuod —|

(OVQ #9-0L) 218 OW 404 puBLILIOD BlliM -¢-§ 34N9Id

'Sjq 2Jed JUop, =X :3JON

1nop

oval

x | x oaYra}zafea)ra

[nansTvol — Yav) 1as

s)q ejep gl

(0°0 @poW)

(1 @pow)

SL vl €L 2L L 0L 6

siq Byuoo ——=

'(OVa 49-2L) 2285 O 404 puBLILIOD BlliM ‘4§ 34N9I4

1nop

oval

oa{vajfzafea}fra}safea)zaYsaea}orafia

Nansvof — JenY as

sHq ejep zi

(0°0 @poW)

(1 8POW) Gl vl €l ¢k L O 6 8 L 9 § ¢

s)q Biyuoo —»

S |

¢e8Y/c18Y/C08YdOIN

UMOUNUN SI)] = X poJes|o sI g = 0 s sINg=|
0, Se peau ‘g pajuswiaidwiun = N 4 SIqeILM = M

¥Od 1e anjeA = u-
119 8jqepeay =y
puabar

"pauoudl si x g "siiq ejeq indu| Ova :0a:bLA@ 0-LL ¥Q

“(1e21dAy) ¥ 00S 0} PalosuLod S| uid LNOA

“UMOP JNYS SEM Jey} [suueyd ay} je s|qe|ieAe jou sijndjno Bojeuy ‘[suueyd Dy Paiosies ay} UMopinys
*a|qe|leAe. SI LNOA “uoljesado apow aAoy

19 [03U0D UMOPINYS INAINO INAHS 2L 19

0
L

‘A8F0'Z = 43U [BUISIUI B18YM (960%/0 » FF8A , 2= 1MOA) Xz =0
(9607/Q « 33N =1N0A) x| =1

1q uoyosles ueo INAINO 1Y €L 1q

e;D U0 — vl g

I
o

Yova oy em =
82vQ o} sm
uq uoposjes Soyg o Yova gy GLNg

n
—

12I9UYM

0uq SLHq
x [x [x [xJoa]w]ea]cea|va[safoeal sa[nNans] vo [—]an
XM XM XM XM XM M XM XM | XM XM XM XM OM XM XM XM

(ova L19-8) Z08vdOW HOL ¥ILSIOTY ANVINWOD JLIMM €6 ¥ILSIOIY

0uq sL g
x [x JoaJw]eza[ea] va]sa| oa[za[sea]ea[nans] vo [—]av
XM XM XM M XM XM XM XM | M XM XM XM OM XM XM XM

(0Va 118-01) Z18ydON YOS ¥IALSIOTH ANVINWOD JLIMM :2-6 ¥ILSIOIY

0uq SLHq
oa [va | za [ea] va | sa] ea| a0 sa]sea]owa]a]|naHs] vo [—[awv
XM XM XM XM XM XM XM M | XM M XM XM 0M XM XM XM

(ova 118-Z1) 228vdON HOL ¥IALSIOTH ANVINWOD LM :1-6 ¥ILSIOIY

¢¢8v/c18Y/C08YdOIN

K U \ S C MCP4822: 2-CHANNEL 12-BIT D/A CONVERTER WITH SPI

vvvvvvvvvvvvvvvvvvvvvv

Example solution to ‘bit banging’ exercise

#define SSN 10 // slave select pin
#define MOSI 11 // master out pin
#define MISO 12 // master in pin
#define SCK 13 // serial clock pin

void setup ()
{
Serial.begin(9600);
pinMode (SSN, OUTPUT) ;
digitalWrite (SSN, HIGH); // slave select inactive
pinMode (MOSI, OUTPUT);
pinMode (MISO, INPUT);
pinMode (SCK, OUTPUT) ;
digitalWrite (SCK, LOW); // clock idle

void sendBit (unsigned char bit)

{
digitalWrite (MOSI, bit & 1); // value to write
digitalWrite (SCK, HIGH); // clock data into device
digitalWrite (SCK, LOW); // clock idle

int recvBit (void)

{

digitalWrite (SCK, HIGH); // clock don’t care bit into device
int bit = digitalRead (MISO); // result bit from device
digitalWrite (SCK, LOW); // clock idle

return bit;

int readADC (unsigned char channel)

{

digitalWrite (SSN, LOW); // slave select active
sendBit (1) ; // start bit

sendBit (1) ; // single—ended mode
sendBit (channel >> 2);

sendBit (channel >> 1);

sendBit (channel) ;

sendBit (0) ; // discard empty result bit
sendBit (0) ; // discard null result bit

int advalue = 0;
for (int i= 0; 1 < 12; ++1i)
advalue = (advalue << 1) + recvBit();

digitalWrite (SSN, HIGH); // slave select inactive

return advalue;

void loop ()

{
Serial.println (readADC(0));
delay (250);

