
 APPLICATION NOTE

AN0303011/Rev1.00 September 2003 Page 1 of 14

PRELIMINARY

General
Serial Peripheral Interface (SPI) & Inter-IC (IC2) (SPI_I2C)

Introduction
This Application note provide a general view on SPI and I2C, comparison of the two communication standard is also detailed.

The H8/300L Super Low Power (SLP) series of 8-bit mircocontrollers has at least one Serial Communication Interface (SCI) channel.
This communication interface channel can also support full standard synchronous communications. Serial Peripheral Interface (SPI)
and Inter-IC (I2C), both are synchronous communications provide good support for communication with slow peripheral devices that
are accessed intermittently. The SPI and I2C can be emulated using SCI channel or I/O port.

Target Device
General

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 2 of 14

PRELIMINARY

Contents

1. Serial Peripheral Interface (SPI™) ... 3
1.1 SPI Overview .. 3
1.2 SPI Detail .. 3
1.3 Data and Control Lines of the SPI .. 5
1.4 SPI Configuration.. 5

2. Inter-IC (I2C
™

)... 6
2.1 I2C Overview ... 6
2.2 I2C Detail ... 6
2.3 I2C Protocol ... 7
2.4 I2C Configuration... 8

3. SPI vs. I2C ... 10

4. Summary... 11

5. Implementation Feasibility... 12

Reference.. 12

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 3 of 14

PRELIMINARY

1. Serial Peripheral Interface (SPI™)

1.1 SPI Overview
SPI is a general-purpose synchronous serial interface. During an SPI transfer, transmit and receive data is simultaneously shifted out
and in serially. A serial clock line synchronizes the shifting and sampling of the information on two serial data lines.

Motorola created the SPI port in the mid 1980’s to use in their microcontroller product families. The SPI is mainly used to allow a
microcontrollers to communicate with peripheral devices such as E2PROMs.

SPI devices communicate using a master-slave relationship. Due to its lack of built-in device addressing, SPI requires more effort
and more hardware resources than I2C when more than one slave is involved. But SPI tends to be simpler and more efficient than I2C
in point-to-point (single master, single slave) applications for the very same reason; the lack of device addressing means less
overhead.

1.2 SPI Detail
SPI is a serial bus standard established by Motorola and supported in silicon products from various manufacturers. SPI interfaces are
available on popular communication processors and microcontrollers. It is a synchronous serial data link that operates in full duplex
(signals carrying data go in both directions simultaneously).

Devices communicate using a master/slave relationship, in which the master initiates the data frame. When the master generates a
clock and selects a slave device, data may be transferred in either or both directions simultaneously. In fact, as far as SPI is
concerned, data are always transferred in both directions. It is up to the master and slave devices to know whether a received byte is
meaningful or not.

So a device must discard the received byte in a "transmit only" frame or generate a dummy byte for a "receive only" frame.

SPI specifies four signals: clock (SCK1); master data output, slave data input (SI1); master data input, slave data output (SO1); and
chip select (CS). Figure 1 shows these signals in a single-slave configuration. SCK1 is generated by the master and input to all slaves.
SI1 carries data from master to slave. SO1 carries data from slave back to master. A slave device is selected when the master asserts
its CS signal.

Figure 1: Single master, single slave SPI implementation

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 4 of 14

PRELIMINARY

If multiple slave devices exist, the master generates a separate slave select signal for each slave. These relationships are illustrated in
Figure 2.

Figure 2: Single master, multiple slave SPI implementation

The master generates slave select signals using general-purpose discrete input/output pins or other logic. This consists of old-
fashioned bit banging and can be pretty sensitive. You have to time it relative to the other signals and ensure, for example, that you
don't toggle a select line in the middle of a frame.

While SPI doesn't describe a specific way to implement multi-master systems, some SPI devices support additional signals that make
such implementations possible. However, it's complicated and usually unnecessary, so it's not often done.

A pair of parameters called clock polarity (CPOL) and clock phase (CPHA) determine the edges of the clock signal on which the
data are driven and sampled. Each of the two parameters has two possible states, which allows for four possible combinations, all of
which are incompatible with one another. So a master/slave pair must use the same parameter pair values to communicate. If
multiple slaves are used that are fixed in different configurations, the master will have to reconfigure itself each time it needs to
communicate with a different slave.

SPI does not have an acknowledgement mechanism to confirm receipt of data. In fact, without a communication protocol, the SPI
master has no knowledge of whether a slave even exists. SPI also offers no flow control. If you need hardware flow control, you
might need to do something outside of SPI.

Slaves can be thought of as input/output devices of the master. SPI does not specify a particular
higher-level protocol for master-slave dialog. In some applications, a higher-level protocol is not
needed and only raw data are exchanged. An example of this is an interface to a simple codec. In
other applications, a higher-level protocol, such as a command-response protocol, may be
necessary. Note that the master must initiate the frames for both its command and the slave's
response.

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 5 of 14

PRELIMINARY

1.3 Data and Control Lines of the SPI
The SPI requires two control lines (CS and SCK) and two data lines (SI and SO).

With CS (Chip-Select) the corresponding peripheral device is selected. This pin is mostly active-low. In the unselected state the SO
lines are hi-Z and therefore inactive. The master decides with which peripheral device it wants to communicate. The clock line
SCLK is brought to the device whether it is selected or not. The clock serves as synchronization of the data communication.

The majority of SPI devices provide these four lines. Sometimes it happens that SDI and SDO are multiplexed, for example in the
temperature sensor LM74 from National Semiconductor, or that one of these lines is missing. A peripheral device which must or can
not be configured, requires no input line, only a data output. As soon as it gets selected it starts sending data. In some ADCs
therefore the SDI line is missing (e.g. MCCP3001 from Microchip).

There are also devices that have no data output. For example LCD controllers (e.g. COP472-3 from National Semiconductor), which
can be configured, but cannot send data or status messages.

1.4 SPI Configuration
Because there is no official specification, what exactly SPI is and what not, it is necessary to consult the data sheets of the
components one wants to use. Important are the permitted clock frequencies and the type of valid transitions.

There are no general rules for transitions where data should be latched. Although not specified by Motorola, in practice four modes
are used. These four modes are the combinations of CPOL and CPHA. In table 1, the four modes are listed.

SPI-mode CPOL CPHA

0
1
2
3

0
0
1
1

0
1
0
1

Table 1: SPI Modes

If the phase of the clock is zero, i.e. CPHA = 0, data is latched at the rising edge of the clock with CPOL = 0, and at the falling edge
of the clock with CPOL = 1. If CPHA = 1, the polarities are reversed. CPOL = 0 means falling edge, CPOL = 1 rising edge.

The micro controllers from Motorola allow the polarity and the phase of the clock to be adjusted. A
positive polarity results in latching data at the rising edge of the clock. However data is put on the
data line already at the falling edge in order to stabilize. Most peripherals which can only be slaves,
work with this configuration. If it should become necessary to use the other polarity, transitions are
reversed.

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 6 of 14

PRELIMINARY

2. Inter-IC (I2C™)

2.1 I2C Overview
The I C-bus is developed by Philips to maximize hardware efficiency and circuit simplicity. The I2C interface is a simple
master/slave type interface. Simplicity of the I C system is primarily due to the bi-directional 2-wire design, a serial data line (SDA)
and serial clock line (SCL), and to the protocol format.

I2C is appropriate for interfacing to devices on a single board, and can be stretched across multiple boards inside a closed system, but
not much further. An example is a host CPU on a main embedded board using I2C to communicate with user interface devices
located on a separate front panel board. A second example is SDRAM DIMMs, which can feature an I2C EEPROM containing
parameters needed to correctly configure a memory controller for that module.

2.2 I2C Detail
I2C is a two-wire serial bus, as shown in Figure 3. There's no need for chip select or arbitration logic, making it cheap and simple to
implement in hardware.

The two I2C signals are serial data (SDA) and serial clock (SCL). Together, these signals make it possible to support serial
transmission of 8-bit bytes of data-7-bit device addresses plus control bits-over the two-wire serial bus. The device that initiates a
transaction on the I2C bus is termed the master.

The master normally controls the clock signal. A device being addressed by the master is called a slave.

In a bind, an I2C slave can hold off the master in the middle of a transaction using what's called clock stretching (the slave keeps
SCL pulled low until it's ready to continue). Most I2C slave devices don't use this feature, but every master should support it.

Figure 3: I2C has two lines in total

The I2C protocol supports multiple masters, but most system designs include only one. There may be one or more slaves on the bus.
Both masters and slaves can receive and transmit data bytes.

Each I2C-compatible hardware slave device comes with a predefined device address, the lower bits of which may be configurable at
the board level. The master transmits the device address of the intended slave at the beginning of every transaction. Each slave is
responsible for monitoring the bus and responding only to its own address. This addressing scheme limits the number of identical
slave devices that can exist on an I2C bus without contention, with the limit set by the number of user-configurable address bits
(typically two bits, allowing up to four identical devices).

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 7 of 14

PRELIMINARY

2.3 I2C Protocol
The I2C bus physically consists of 2 active wires and a ground connection. The active wires, called SDA and SCL, are both bi-
directional. SDA is the Serial DAta line, and SCL is the Serial CLock line.

Every device hooked up to the bus has its own unique address, no matter whether it is an MCU, LCD driver, memory, or ASIC. Each
of these chips can act as a receiver and/or transmitter, depending on the functionality. Obviously, an LCD driver is only a receiver,
while a memory or I/O chip can be both transmitter and receiver.

The I2C bus is a multi-master bus. This means that more than one IC capable of initiating a data transfer can be connected to it. The
I2C protocol specification states that the IC that initiates a data transfer on the bus is considered the Bus Master, which generally is a
microcontrollers. Consequently, at that time, all the other ICs are regarded to be Bus Slaves.

First, the MCU will issue a START condition. This acts as an 'Attention' signal to all of the connected devices. All ICs on the bus
will listen to the bus for incoming data.

Then the MCU sends the ADDRESS of the device it wants to access, along with an indication whether the access is a Read or Write
operation (Write in our example). Having received the address, all IC's will compare it with their own address. If it doesn't match,
they simply wait until the bus is released by the stop condition (see below). If the address matches, however, the chip will produce a
response called the ACKNOWLEDGEMENT signal.

Once the MCU receives the acknowledgement, it can start transmitting or receiving DATA. In our case, the MCU will transmit data.
When all is done, the MCU will issue the STOP condition. This is a signal that the bus has been released and that the connected ICs
may expect another transmission to start any moment.

In general, the protocol for I2C as illustrated in Figure 4:

Figure 4: I2C Communication

* The protocol may have unique conditions depending on the bus. It’s advisable for user to understand the physical structure and the
hardware of the bus before implementing I2C.

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 8 of 14

PRELIMINARY

2.4 I2C Configuration
i. The Start and Stop Configuration

A few note about start and stop conditions:

� A single message can contain multiple Start conditions. The use of this so-called "repeated start" is common in I2C.

� A Stop condition ALWAYS denotes the END of a transmission. Even if it is issued in the middle of a transaction or in the
middle of a byte. It is "good behaviour" for a chip that, in this case, it disregards the information sent and resumes the
"listening state", waiting for a new start condition.

ii) Transmitting a byte to a slave

Once the START condition has been sent, a byte can be transmitted by the MASTER to the SLAVE.

This first byte after a start condition will identify the slave on the bus (address) and will select the mode of operation. The meaning
of all following bytes depends on the slave.

iii) Receiving a byte from a slave

Once the slave has been addressed and the slave has acknowledged this, a byte can be received from the slave if the R/W bit in the
address was set to READ (set to '1').

The protocol syntax is the same as in transmitting a byte to a slave, except that now the master is not allowed to touch the SDA line.
Prior to sending the 8 clock pulses needed to clock in a byte on the SCL line, the master releases the SDA line. The slave will now
take control of this line. The line will then go high if it wants to transmit a '1' or, if the slave wants to send a '0', remain low.

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 9 of 14

PRELIMINARY

In total, this sequence has to be performed 8 times to complete the data byte. Bytes are always transmitted MSB first.

The meaning of all bytes being read depends on the slave. There is no such thing as a "universal status register". You need to consult
the data sheet of the slave being addressed to know the meaning of each bit in any byte transmitted.

iv) Getting Acknowledgement from a Slave

When an address or data byte has been transmitted onto the bus, then this must be ACKNOWLEDGED by the slave(s). In case of an
address: If the address matches its own, then only that slave will respond to the address with an ACK. In case of a byte transmitted to
an already addressed slave, then that slave will respond with an ACK as well.

The slave that is going to give an ACK pulls the SDA line low immediately after reception of the 8th bit transmitted, or, in case of an
address byte, immediately after evaluation of its address. In practical applications this will not be noticeable

This means that as soon as the master pulls SCL low to complete the transmission of the bit (1),
SDA will be pulled low by the slave (2).

The master now issues a clock pulse on the SCL line (3). the slave will release the SDA line
upon completion of this clock pulse (4).

SDA

SCL

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 10 of 14

PRELIMINARY

3. SPI vs. I2C
Although both SPI and I2C provide good support for communication with slow peripheral devices that are accessed intermittently,
each of the way of communication have its own advantages towards each other.

SPI is better suited than I2C for applications that are naturally thought of as data streams (as opposed to reading and writing
addressed locations in a slave device). An example of a "stream" application is data communication between microprocessors or
digital signal processors. Another is data transfer from analog-to-digital converters.

SPI can also achieve significantly higher data rates than I2C which is limited to 400KHz in most cases. SPI-compatible interfaces
often range into the tens of megahertz. SPI really gains efficiency in applications that take advantage of its duplex capability, such as
the communication between a "codec" (coder-decoder) and a digital signal processor, which consists of simultaneously sending
samples in and out.

Due to SPI lack of built-in device addressing, it requires more effort and more hardware resources than I2C when more than one
slave is involved. The disadvantage here lies that it is a three-wire interface and if you are having more than 1 device, then you have
to provide each device with separate Chip Select pins (CS).

But SPI tends to be simpler and more efficient than I2C in point-to-point (single master, single slave) applications for the very same
reason; the lack of device addressing means less overhead.

On the other hand, I2C requires only two wires to implement and has a unique address so that a master/slave relationship can be
maintained compare to SPI which needed three wires to implement the addressing mode.

I2C also offers better support for communication with on-board devices that are accessed on an occasional basis. I2C's competitive
advantage over other low-speed short-distance communication schemes is that its cost and complexity don't scale up with the
number of devices on the bus because of the generic nature of the bus interface.

Besides, the complexity of the supporting I2C software components can be significantly higher than that of several competing
schemes such as SPI in a very simple configuration. With its built-in addressing scheme and straightforward means to transfer strings
of bytes, I2C is an elegant, minimalist solution for modest, "inside the box" communication needs.

I2C is also a true multi-master bus because it has collision detection and arbitration to prevent data corruption if two or more masters
simultaneously initiate data transfer. Furthermore, I2C also preserve data integrity by filtering rejects spikes on the bus data line.

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 11 of 14

PRELIMINARY

4. Summary

SPI I2C

1) Three bus lines are required; a data input line (SI1), a
data output line (SO1) and a serial clock line (SCK1)
[plus 1 Chip Select (CS)]

2) No official specification (component dependent)

3) Higher data rates (up to 10 MHz or more)

4) More efficient in point-to-point (single master, single
slave) applications

5) Lack of built-in device addressing

6) Does not have an acknowledgement mechanism to
confirm receipt of data.

7) Less overhead when handling point-to-point
application

8) Suited better for applications that are naturally thought
of as data streams

1) Two bus lines are required; a serial data line (SDA)
and a serial clock line (SCL)

2) With official specification (I2C protocol created by
Philips)

3) Support transfer speeds of around 100kHz (original
standard, or 400kHz using the most recent standard)

4) More efficient in multi-master, multi-slave
applications

5) Built-in addressing scheme and straightforward

6) Have an acknowledgement mechanism to confirm
receipt of data

7) More overhead when handling point-to-point
application

8) Suited better for communication with on-board
devices that are accessed on an occasional basis.

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 12 of 14

PRELIMINARY

5. Implementation Feasibility
Any SLP series can be supported by the I2C bus and SPI, either by communicating using Serial Communication Interface (SCI) or
I/O ports.

For implementing I2C with SCI, it requires extra I/O lines and components.

Please refer to Application Note on “Interfacing with EEPROM with emulating SPI” for example of using SCI to implement SPI.

For implementing I2C using I/O ports, please refer to Application Note on “Interfacing With EEPROM with emulating I2C”.

Reference
1. http://www.embedded.com/97/feat9711.htm

2. http://www.mct.net/faq/spi.html

3. http://www.epanorama.net/links/serialbus.html#spi

4. http://www.mcumaster.com/hc11/Block/SPI/spi.html#Interrupts

5. http://www.cdcentre.demon.co.uk/teletext/i2c.htm

6. The I2C-Bus Specification (Version 2.1), January 2000, Philips Semiconductor

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 13 of 14

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.03 - First edition issued

General
Serial Peripheral Interface & Inter-IC (SPI_I2C)

AN0303011/Rev1.00 September 2003 Page 14 of 14

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

